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Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, pla-
cerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, no-
nummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pel-
lentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.
Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla
ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in,
pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean fauci-
bus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor sem-
per nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis
quis, diam. Duis eget orci sit amet orci dignissim rutrum.
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1 Introduction

Given a social network, which of its nodes are more central? This question has been asked
many times in sociology, psychology and computer science, and a whole plethora of centrality
measures (a.k.a. centrality indices, or rankings) were proposed to account for the importance
of the nodes of a network.

These networks, typically generated directly or indirectly by human activity and interaction
(and therefore hereafter dubbed social”), appear in a large variety of contexts and often exhibit
a surprisingly similar structure. One of the most important notions that researchers have been
trying to capture in such networks is “node centrality”: ideally, every node (often representing
an individual) has some degree of influence or importance within the social domain under con-
sideration, and one expects such importance to surface in the structure of the social network;
centrality is a quantitative measure that aims at revealing the importance of a node.

Among the types of centrality that have been considered in the literature, many have to do with
distances between nodes. Take, for instance, a node in an undirected connected network: if
the sum of distances to all other nodes is large, the node under consideration is peripheral;
this is the starting point to define Bavelas’s closeness centrality [1], which is the reciprocal of
peripherality (i.e., the reciprocal of the sum of distances to all other nodes).

The role played by shortest paths is justified by one of the most well-known features of complex
networks, the so-called small-world phenomenon. A small-world network [2] is a graph where
the average distance between nodes is logarithmic in the size of the network, whereas the clus-
tering coefficient is larger (that is, neighborhoods tend to be denser) than in a random Erdős-
Rényi graph with the same size and average distance. The fact that social networks (whether
electronically mediated or not) exhibit the small-world property is known at least since Mil-
gram’s famous experiment [] and is arguably the most popular of all features of complex net-
works. For instance, the average distance of the Facebook graph was recently established to be
just 4.74 [3].
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2 Characterization of networks

Before 1960, graph theory mainly dealt with the properties of specific individual graphs. In
the 1960s, Paul Erdős and Alfred Rényi initiated a systematic study of random graphs 1. Two
well-studied graph ensembles are GN ,M , the ensemble of all graphs with N nodes and M edges,
and GN ,p , the ensemble of all graphs with N nodes and probability p of any two nodes being
connected.

An important attribute of a graph is the average degree, i.e., the average number of edges con-
nected to each node. We will denote the degree of the ith node by ki and the average degree by
< r > . N -vertex graphs with < k >=O(N 0) are called sparse graphs.

The Erdős-Rényi model has traditionally been the dominant subject of study in the field of ran-
dom graphs. Recently, however, several studies of real-world networks have found that the ER
model fails to reproduce many of their observed properties. One of the simplest properties of
a network that can be measured directly is the degree distribution, or the fraction P(k) of nodes
having k connections (degree k). A well-known result for ER networks is that the degree distri-
bution is Poissonian,

P (k) = ez zk

k !
(1)

Where z =< k >. is the average degree. Direct measurements of the degree distribution for real

networks show that the Poisson law does not apply. Rather, often these nets exhibit a scale-free
degree distribution:

P (k) = ck−γ for k = m, ...,K (2)

Where c ∼ (γ−1)mγ−1 is a normalization factor, and m and K are the lower and upper cutoffs
for the degree of a node, respectively. All real-world networks are finite and therefore all their
moments are finite. The actual value of the cutoff K plays an important role. It may be approxi-
mated by noting that the total probability of nodes with k > K is of order 1/N∫ ∞

K
P (k)dk ∼ 1

N
(3)

This yields the result

K ∼ mN 1/(γ−1) (4)

The degree distribution alone is not enough to characterize the network. There are many
other quantities, such as the degree-degree correlation (between connected nodes), the spatial

1Random graph theory is, not the study of individual graphs, but the study of a statistical ensemble of graphs
(or, as mathematicians prefer to call it, a probability space of graphs). The ensemble is a class consisting of many
different graphs, where each graph has a probability attached to it. A property studied is said to exist with probabil-
ity P if the total probability of a graph in the ensemble possessing that property is P (or the total fraction of graphs
in the ensemble that has this property is P). This approach allows the use of probability theory in conjunction with
discrete mathematics for studying graph ensembles.
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correlations, the clustering coefficient, the betweenness or central-ity distribution, and the self-
similarity exponents.

2.1 Random graphs as a model of real networks

Many natural and man-made systems are networks, i.e., they consist of objects and interactions
between them. These include computer networks, in particular the Internet, logical networks,
such as links between WWW pages, and email networks, where a link represents the presence
of a person’s address in another person’s address book. Social interactions in populations, work
relations, etc. can also be modeled by a network structure. Networks can also describe possi-
ble actions or movements of a system in a configuration space (a phase space), and the nearest
configurations are connected by a link. All the above examples and many others have a graph
structure that can be studied. Many of them have some ordered structure, derived from geo-
graphical or geometrical considerations, cluster and group formation, or other specific prop-
erties. However, most of the above networks are far from regular lattices and are much more
complex and random in structure. Therefore, it is plausible that they maintain many properties
of the appropriate random graph model.

For large γ (usually, for γ> 4) the properties of scale-free networks, such as distances, optimal
paths, and percolation, are the same as in ER networks. In contrast, for γ< 4, these properties
are very different and can be regarded as anomalous.

2.2 Properties of real-world networks

Una piccola introduzione

2.2.1 Degree distribution

The degree of a node is the number of links connected to it. In directed networks, one can
distinguish between the in-degree, out-degree, and the total degree (which is the sum of the
two). The degree distribution, P (k), is the fraction of sites having degree k. As can be seen
above, many real networks do not exhibit a Poisson degree distribution, as predicted in the ER
model. In fact, many of them exhibit a distribution with a long, power-law, tail, P (k) ∼ k−γ with
some γ, usually between 2 and 3.

2.2.2 Distances and optimal paths

Since many networks are not embedded in real space, the geometrical distance between nodes
is meaningless. The most important distance measure in such net- works is the minimal num-
ber of hops (or chemical distance). That is, the distance between two nodes in the network is
defined as the number of edges in the shortest path between them. If the edges are assumed to
be weighted, the lowest total weight path, called the optimal path, may also be used. The usual
mathematical definition of the diameter of the network is the length of the path between the
farthest nodes in the network.

4



2.2.3 Clustering

The clustering coefficient is usually related to a community represented by local structures.
The usual definition of clustering (sometimes also referred to as transi- tivity) is related to the
number of triangles in the network. The clustering is high if two nodes sharing a neighbor
have a high probability of being connected to each other. There are two common definitions of
clustering. The first is global,

C = 3× the number of triangles in the network

the number of connected triples of vertices
(5)

where a “connected triple” means a single vertex with edges running to an unordered pair of
other vertices.

A second definition of clustering is based on the average of the clustering for single nodes.
The clustering for a single node is the fraction of pairs of its linked neighbors out of the total
number of pairs of its neighbors:

Ci = the number of triangles connected to vertex i

the number of triples centered on vertex i
(6)

For vertices with degree 0 or 1, for which both numerator and denominator are zero, we use
Ci = 0. Then the clustering coefficient for the whole network is the average

C = 1

n

∑
i

Ci (7)

In both cases the clustering is in the range 0 ≤ C ≤ 1. In random graph models such as the ER
model and the configuration model, the clustering coefficient is low and decreases to 0 as the
system size increases. This is also the situation in many growing network models. However,
in many real-world networks the clustering coefficient is rather high and remains constant for
large network sizes. This observation led to the introduction of the small-world model, which
offers a combination of a regular lattice with high clustering and a random graph.

2.2.4 Betweenness centrality

Path-based measures exploit not only the existence of shortest paths but actually take into ex-
amination all shortest paths (or all paths) coming into a node. We remark that in-degree can
be considered a path-based measure, as it is the equivalent to the number of incoming paths of
length one.

Betweenness centrality was introduced for edges, and then rephrased. The idea is to measure
the probability that a random shortest path passes through a given node: if σy z is the number
of shortest paths going from y to z, and σy z(x) is the number of such paths that pass through
x, we define the betweenness of x as

β(x) = ∑
y ̸=x ̸=z

σy z(x)

σy z
. (8)
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The intuition behind betweenness is that if a large fraction of shortest paths passes through x,
then x is an important junction point of the network. Indeed, removing nodes in betweenness
order causes a very quick disruption of the network.

3 The Small-World Phenomenon

The Aim of the project is to study the small-world phenomenon in location-based (social) net-
works. As test cases, we consider three real-world datasets: Brightkite, Gowalla and Foursquare.
In the next sections, we will describe the datasets and the methodology we used to extract the
networks from them.

Many real-world networks have many properties that cannot be explained by the ER model.
One such property is the high clustering observed in many real-world networks. This led Watts
and Strogatz to develop an alternative model, called the “small-world” model [WS98]. Their
idea was to begin with an ordered lattice, such as the k-ring (a ring where each site is connected
to its 2k nearest neighbors - k from each side) or the two-dimensional lattice. A variant of this
process is to add links rather than rewire, which simplifies the analysis without considerably
affecting the results. The obtained network has the desirable properties of both an ordered
lattice (large clustering) and a random network (small world), as we will discuss below.

3.1 Clustering in a small-world network

The simplest way to treat clustering analytically in a small-world network is to use the link ad-
dition, rather than the rewiring model. In the limit of large network size, N → ∞, and for a
fixed fraction of shortcuts φ, it is clear that the probability of forming triangle vanishes as we
approach 1/N , so the contribution of the shortcuts to the clustering is negligible. Therefore,
the clustering of a small-world network is determined by its underlying ordered lattice. For ex-
ample, consider a ring where each node is connected to its k closest neighbors from each side.
A node’s number of neighbors is therefore 2k, and thus it has 2k(2k - 1)/2 = k(2k - 1) pairs of
neighbors. Consider a node, i. All of the k nearest nodes on i’s left are connected to each other,
and the same is true for the nodes on i’s right. This amounts to 2k(k - 1)/2 = k(k - 1) pairs. Now
consider a node located d places to the left of k. It is also connected to its k nearest neighbors
from each side. Therefore, it will be connected to k - d neighbors on i’s right side. The total
number of connected neighbor pairs is

k(k −1)+
k∑

d=1
(k −d) = k(k −1)+ k(k −1)

2
= 32

k
(k −1) (9)

and the clustering coefficient is:

C = 3(k −1)

2(2k −1)
(10)

For every k > 1, this results in a constant larger than 0, indicating that the clustering of a
small-world network does not vanish for large networks. For large values of k, the clustering
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coefficient approaches 3/4, that is, the clustering is very high. Note that for a regular two-
dimensional grid, the clustering by definition is zero, since no triangles exist. However, it is
clear that the grid has a neighborhood structure.

3.2 Distances in a small-world network

The second important property of small-world networks is their small diameter, i.e., the small
distance between nodes in the network. The distance in the underlying lattice behaves as the
linear length of the lattice, L. Since N ∼ Ld where d is the lattice dimension, it follows that the
distance between nodes behaves as:

l ∼ L ∼ N 1/d (11)

Therefore, the underlying lattice has a finite dimension, and the distances on it behave as a
power law of the number of nodes, i.e., the distance between nodes is large. However, when
adding even a small fraction of shortcuts to the network, this behavior changes dramatically.

Let’s try to deduce the behavior of the average distance between nodes. Consider a small-
world network, with dimension d and connecting distance k (i.e., every node is connected to
any other node whose distance from it in every linear dimension is at most k). Now, consider
the nodes reachable from a source node with at most r steps. When r is small, these are just the
r-th nearest neighbors of the source in the underlying lattice. We term the set of these neighbors
a “patch”. the radius of which is kr , and the number of nodes it contains is approximately
n(r ) = (2kr )d .

We now want to find the distance r for which such a patch will contain about one shortcut.
This will allow us to consider this patch as if it was a single node in a randomly connected net-
work. Assume that the probability for a single node to have a shortcut is Φ. To find the length
for which approximately one shortcut is encountered, we need to solve for r the following equa-
tion: (2kr )dΦ= 1. The correlation length ξ defined as the distance (or linear size of a patch) for
which a shortcut will be encountered with high probability is therefore,

ξ= 1

kΦ1/d
(12)

Note that we have omitted the factor 2, since we are interested in the order of magnitude. Let
us denote by V (r ) the total number of nodes reachable from a node by at most r steps, and by
a(r ), the number of nodes added to a patch in the r-th step. That is, a(r ) = n(r )−n(r −1). Thus,

a(r ) ∼ dn(r )

dr
= 2kd(2kr )d−1 (13)

When a shortcut is encountered at the r step from a node, it leads to a new patch. This new patch
occurs after r steps, and therefore the number of nodes reachable from its origin is V (r − r ′).
Thus, we obtain the recursive relation

V (r ) =
r∑

r ′=0

a(r ′)[1+ξ−d V (r − r ′)] (14)
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where the first term stands for the size of the original patch, and the second term is derived from
the probability of hitting a shortcut, which is approximately ξ−d for every new node encoun-
tered. To simplify the solution of 14, it can be approximated by a differential equation. The sum
can be approximated by an integral, and then the equation can be differentiated with respect to
r . For simplicity, we will concentrate here on the solution for the one-dimensional case, with
k = 1, where a(r ) = 2. Thus, one obtains

dV (r )

dr
= 2[1+V (r )/ξ] (15)

the solution of which is:

V (r ) = ξ
(
e2r /ξ−1

)
(16)

For r ≪ ξ, the exponent can be expanded in a power series, and one obtains V (r ) ∼ 2r = n(r ), as
expected, since usually no shortcut is encountered. For r g gξ, V (r ). An approximation for the
average distance between nodes can be obtained by equating V (r ) from 16 to the total number
of nodes, V (r ) = N . This results in

r ∼ ξ

2
ln

N

ξ
(17)

As apparent from 17, the average distance in a small-world network behaves as the distance in
a random graph with patches of size ξ behaving as the nodes of the random graph.
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