You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

63 lines
2.3 KiB
Python

#! /usr/bin/python3
import networkx as nx
from utils import *
import warnings
import time
import random
import argparse
warnings.filterwarnings("ignore")
def random_sample(graph, k):
nodes = list(graph.nodes())
n = int(k*len(nodes))
nodes_sample = random.sample(nodes, n)
G = graph.subgraph(nodes_sample)
if not nx.is_connected(G):
print("Graph is not connected. Taking the largest connected component")
connected = max(nx.connected_components(G), key=len)
G_connected = graph.subgraph(connected)
print(nx.is_connected(G_connected))
print("Number of nodes in the sampled graph: ", G.number_of_nodes())
print("Number of edges in the sampled graph: ", G.number_of_edges())
return G_connected
if __name__ == "__main__":
# use argparse to take as input the name of the graph, the options are "foursquare", "gowalla" and "brightkite"
parser = argparse.ArgumentParser()
parser.add_argument("graph", help="Name of the graph to be used. Options are 'foursquare', 'gowalla' and 'brightkite'")
parser.add_argument("k", help="Percentage of nodes to be sampled. Needs to be a float between 0 and 1")
parser.add_argument("niter", help="Number of rewiring per edge. Needs to be an integer. Default is 5")
parser.add_argument("nrand", help="Number of random graphs. Needs to be an integer. Default is 5")
parser.add_help = True
args = parser.parse_args()
# if no input is given for niter and nrand, set them to default values
if args.niter == None:
print("No input for niter. Setting it to default value: 5")
args.niter = 5
if args.nrand == None:
print("No input for nrand. Setting it to default value: 5")
args.nrand = 5
# create the graph. G = create_graph_from_checkins('name') where name is the input argument of graph
G = create_graph_from_checkins(str(args.graph))
G.name = str(args.graph) + " Checkins Graph"
# sample the graph
G_sample = random_sample(G, float(args.k))
# compute omega
start = time.time()
print("\nComputing omega for graph: ", G.name)
omega = nx.omega(G_sample, niter = int(args.niter), nrand = int(args.nrand))
end = time.time()
print("Omega coefficient for graph {}: {}".format(G.name, omega))
print("Time taken: ", round(end-start,2))