|
|
#!/usr/bin/env python3
|
|
|
|
|
|
from llama_cpp import Llama
|
|
|
from bs4 import BeautifulSoup
|
|
|
import requests
|
|
|
import json
|
|
|
|
|
|
OUTPUT_FILE = "conferences.json"
|
|
|
|
|
|
LLM_EXAMPLE = (
|
|
|
"INPUT:\n"
|
|
|
'<p><a href="http://www.crm.sns.it/event/507/" target="_blank" rel="noreferrer noopener">Statistical'
|
|
|
" and Computational Aspects of Dynamics<br></a>Organized by Buddhima Kasun Fernando Akurugodage"
|
|
|
" (Centro di ricerca matematica Ennio De Giorgi – SNS), Paolo Giulietti, and Tanja"
|
|
|
" Isabelle Schindler (Universität Wien, Austria). Centro De Giorgi – SNS, Pisa. December 13"
|
|
|
" – 16, 2022.</p>\n"
|
|
|
"\n"
|
|
|
"OUTPUT (JSON): \n"
|
|
|
"{"
|
|
|
'"title": "Statistical and Computational Aspects of Dynamics",'
|
|
|
'"url": "http://www.crm.sns.it/event/507/", '
|
|
|
'"description": "Organized by Buddhima Kasun Fernando Akurugodage (Centro di ricerca matematica'
|
|
|
" Ennio De Giorgi – SNS), Paolo Giulietti, and Tanja Isabelle Schindler (Universität Wien,"
|
|
|
' Austria). Centro De Giorgi - SNS, Pisa.", '
|
|
|
'"startDate": "2022-12-13", '
|
|
|
'"endDate": "2022-12-16"'
|
|
|
"}\n"
|
|
|
"\n"
|
|
|
"INPUT:\n"
|
|
|
)
|
|
|
|
|
|
|
|
|
def translate_to_json(conference_html: str) -> str:
|
|
|
llm_answer = llm.create_chat_completion(
|
|
|
max_tokens=None,
|
|
|
messages=[
|
|
|
{
|
|
|
"role": "system",
|
|
|
"content": "You are an assistant aiding a software developer. Be precise in formatting the output correctly as requested",
|
|
|
},
|
|
|
{"role": "user", "content": LLM_EXAMPLE},
|
|
|
{"role": "user", "content": conference_html},
|
|
|
{"role": "user", "content": "OUTPUT (JSON):"},
|
|
|
],
|
|
|
)
|
|
|
|
|
|
return llm_answer["choices"][0]["message"]["content"]
|
|
|
|
|
|
|
|
|
def crawl_page(url):
|
|
|
print(f"Crawling {url}")
|
|
|
r = requests.get(url)
|
|
|
|
|
|
if r.status_code == 200:
|
|
|
html = r.text
|
|
|
soup = BeautifulSoup(html, "html.parser")
|
|
|
|
|
|
# Find the two elements
|
|
|
h2 = soup.find("h2", class_="wp-block-heading")
|
|
|
div = soup.find("div", class_="page-links")
|
|
|
|
|
|
# Extract all the elements between h2_tag and div_tag
|
|
|
if h2 and div:
|
|
|
result = []
|
|
|
|
|
|
current = h2.find_next_sibling()
|
|
|
while current and current != div:
|
|
|
if current.name is not None and current.text.strip():
|
|
|
result.append(str(current))
|
|
|
current = current.find_next_sibling()
|
|
|
|
|
|
print(f"Found {len(result)} conferences")
|
|
|
return result
|
|
|
else:
|
|
|
raise Exception("Failed to find elements")
|
|
|
|
|
|
else:
|
|
|
raise Exception("Failed to fetch")
|
|
|
|
|
|
|
|
|
baseurl = "https://www.dm.unipi.it/research/past-conferences/"
|
|
|
page_urls = [baseurl] + [baseurl + str(i) for i in range(2, 7)]
|
|
|
|
|
|
conference_html_snippets = [snippet for link in page_urls for snippet in crawl_page(link)]
|
|
|
|
|
|
print("LLM Example Context:")
|
|
|
print(LLM_EXAMPLE)
|
|
|
|
|
|
# Load the model and, set the chat format and use the default model context length
|
|
|
llm = Llama(model_path="./mistral-7b-instruct-v0.2.Q4_K_M.gguf", chat_format="llama-2", n_ctx=0)
|
|
|
|
|
|
|
|
|
# clear the result file
|
|
|
open(OUTPUT_FILE, "w").close()
|
|
|
|
|
|
# the result file is a sequence of json objects, one per line
|
|
|
results_file = open(OUTPUT_FILE, "a")
|
|
|
|
|
|
for conference_html in conference_html_snippets:
|
|
|
print("Translating:")
|
|
|
print(conference_html)
|
|
|
|
|
|
conference_json = translate_to_json(conference_html)
|
|
|
|
|
|
print("Result:")
|
|
|
print(conference_json)
|
|
|
|
|
|
try:
|
|
|
# parse the result string into a json object to check correctness
|
|
|
conference_object = json.loads(conference_json)
|
|
|
json.dump(conference_object, results_file)
|
|
|
results_file.write("\n")
|
|
|
results_file.flush()
|
|
|
except:
|
|
|
print("> json is invalid, skipping")
|
|
|
print(conference_json)
|
|
|
|
|
|
results_file.close()
|