You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
|
|
import TestGame.Metadata
|
|
|
|
|
import Std.Tactic.RCases
|
|
|
|
|
import Mathlib.Tactic.LeftRight
|
|
|
|
|
|
|
|
|
|
Game "TestGame"
|
|
|
|
|
World "Contradiction"
|
|
|
|
|
Level 2
|
|
|
|
|
|
|
|
|
|
Title "Widerspruch"
|
|
|
|
|
|
|
|
|
|
Introduction
|
|
|
|
|
"
|
|
|
|
|
Ähnlich siehts aus, wenn man Annahmen hat, die direkte Negierung voneinander sind,
|
|
|
|
|
also `(h : A)` und `(g : ¬ A)`. (`\\not`)
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
Statement
|
|
|
|
|
"Ein Widerspruch impliziert alles."
|
|
|
|
|
(A : Prop) (n : ℕ) (h : ∃ x, 2 * x = n) (g : ¬ (∃ x, 2 * x = n)) : A := by
|
|
|
|
|
contradiction
|
|
|
|
|
|
|
|
|
|
Conclusion
|
|
|
|
|
"
|
|
|
|
|
Detail: `¬ A` ist übrigens als `A → false` implementiert, was aussagt, dass
|
|
|
|
|
\"falls `A` wahr ist, impliziert das `false` und damit einen Widerspruch\".
|
|
|
|
|
"
|
|
|
|
|
-- TODO: Oder doch ganz entfernen?
|
|
|
|
|
|
|
|
|
|
Tactics contradiction
|