You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
|
|
import TestGame.Metadata
|
|
|
|
|
import Std.Tactic.RCases
|
|
|
|
|
import Mathlib.Tactic.LeftRight
|
|
|
|
|
|
|
|
|
|
Game "TestGame"
|
|
|
|
|
World "Contradiction"
|
|
|
|
|
Level 4
|
|
|
|
|
|
|
|
|
|
Title "Ad absurdum"
|
|
|
|
|
|
|
|
|
|
Introduction
|
|
|
|
|
"
|
|
|
|
|
Im weiteren kann man auch Widersprüche erhalten, wenn man Annahmen der Form
|
|
|
|
|
`A = B` hat, wo Lean weiss, dass `A und `B` unterschiedlich sind, z.B. `0 = 1` in `ℕ`
|
|
|
|
|
oder auch Annahmen der Form `A ≠ A` (`\\ne`).
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
Statement
|
|
|
|
|
"Ein Widerspruch impliziert alles."
|
|
|
|
|
(A : Prop) (a b c : ℕ) (g₁ : a = b) (g₂ : b = c) (h : a ≠ c) : A := by
|
|
|
|
|
rw [g₁] at h
|
|
|
|
|
contradiction
|
|
|
|
|
|
|
|
|
|
Message (A : Prop) (a : ℕ) (b : ℕ) (c : ℕ) (g₁ : a = b) (g₂ : b = c) (h : a ≠ c) : A =>
|
|
|
|
|
"Recap: `rw [...] at h` hilft dir hier."
|
|
|
|
|
|
|
|
|
|
Message (A : Prop) (a : ℕ) (b : ℕ) (c : ℕ) (g₁ : a = b) (g₂ : b = c) (h : b ≠ c) : A =>
|
|
|
|
|
"`b ≠ c` muss man als `¬ (b = c)` lesen. Deshalb findet `contradiction` hier direkt
|
|
|
|
|
einen Widerspruch."
|
|
|
|
|
|
|
|
|
|
Tactics contradiction
|