You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
|
|
import TestGame.Metadata
|
|
|
|
|
import TestGame.Levels.SetTheory.L03_Subset
|
|
|
|
|
|
|
|
|
|
import Mathlib.Init.Set
|
|
|
|
|
import Mathlib.Tactic.Tauto
|
|
|
|
|
|
|
|
|
|
set_option tactic.hygienic false
|
|
|
|
|
|
|
|
|
|
Game "TestGame"
|
|
|
|
|
World "SetTheory"
|
|
|
|
|
Level 4
|
|
|
|
|
|
|
|
|
|
Title "Teilmengen"
|
|
|
|
|
|
|
|
|
|
Introduction
|
|
|
|
|
"
|
|
|
|
|
Ein zentrales Lemma ist `Subset.antisymm_iff` welches folgendes sagt:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
A = B ↔ A ⊆ B ∧ B ⊆ A
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
Fast immer wenn man Gleichheiten von Mengen zeigen muss, will man diese in zwei Ungleichungen
|
|
|
|
|
aufteilen.
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
namespace MySet
|
|
|
|
|
|
|
|
|
|
open Set
|
|
|
|
|
|
|
|
|
|
-- Copied some lemmas from `Matlib.Data.Set.Basic` in order to not import the entire file.
|
|
|
|
|
theorem tmp {α : Type _} {s t : Set α} : s = t → s ⊆ t :=
|
|
|
|
|
fun h₁ _ h₂ => by rw [← h₁] ; exact h₂
|
|
|
|
|
|
|
|
|
|
theorem Subset.antisymm_iff {α : Type _} {a b : Set α} : a = b ↔ a ⊆ b ∧ b ⊆ a :=
|
|
|
|
|
⟨fun e => ⟨tmp e, tmp e.symm⟩, fun ⟨h₁, h₂⟩ => Set.ext fun _ => ⟨@h₁ _, @h₂ _⟩⟩
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
theorem empty_subset {α : Type _} (s : Set α) : ∅ ⊆ s :=
|
|
|
|
|
fun.
|
|
|
|
|
|
|
|
|
|
Statement subset_empty_iff
|
|
|
|
|
"Die einzige Teilmenge der leeren Menge ist die leere Menge."
|
|
|
|
|
{A : Type _} (s : Set A) :
|
|
|
|
|
s ⊆ ∅ ↔ s = ∅ := by
|
|
|
|
|
constructor
|
|
|
|
|
intro h
|
|
|
|
|
rw [Subset.antisymm_iff]
|
|
|
|
|
constructor
|
|
|
|
|
assumption
|
|
|
|
|
simp only [empty_subset]
|
|
|
|
|
intro a
|
|
|
|
|
rw [Subset.antisymm_iff] at a
|
|
|
|
|
rcases a with ⟨h₁, h₂⟩
|
|
|
|
|
assumption
|
|
|
|
|
|
|
|
|
|
NewTactics constructor intro rw assumption rcases simp tauto trivial
|
|
|
|
|
|
|
|
|
|
NewLemmas Subset.antisymm_iff empty_subset
|
|
|
|
|
|
|
|
|
|
end MySet
|