You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
|
|
import TestGame.Metadata
|
|
|
|
|
|
|
|
|
|
import Mathlib.Algebra.Module.Submodule.Lattice
|
|
|
|
|
import Mathlib.Data.Real.Basic -- definiert `ℝ`
|
|
|
|
|
import Mathlib.Data.Fin.VecNotation -- Importiert Matrix/Vektor-Notation
|
|
|
|
|
--import Mathlib.LinearAlgebra.FinSupp -- contains `top_le_span_range_iff_forall_exists_fun`
|
|
|
|
|
import Mathlib.Tactic.FinCases
|
|
|
|
|
import Mathlib.Algebra.BigOperators.Finsupp -- default?
|
|
|
|
|
import Mathlib.LinearAlgebra.Span
|
|
|
|
|
|
|
|
|
|
Game "TestGame"
|
|
|
|
|
World "Module"
|
|
|
|
|
Level 6
|
|
|
|
|
|
|
|
|
|
Title "Hülle"
|
|
|
|
|
|
|
|
|
|
Introduction
|
|
|
|
|
"
|
|
|
|
|
Ein typischer Untervektorraum ist die Hülle `⟨M⟩`, oder `span`, also die Menge aller
|
|
|
|
|
`K`-Linearkombinationen von Elementen aus der Menge `M`.
|
|
|
|
|
|
|
|
|
|
In Lean ist dies `Submodule.span K M`.
|
|
|
|
|
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
local notation "ℝ²" => Fin 2 → ℝ
|
|
|
|
|
|
|
|
|
|
open Submodule Set Finsupp
|
|
|
|
|
|
|
|
|
|
Statement mem_span_of_mem
|
|
|
|
|
"Zeige, dass $x \\in M$ auch Element von der $K$-linearen Hülle
|
|
|
|
|
\\langle M \\rangle ist."
|
|
|
|
|
{V K : Type _} [Field K] [AddCommMonoid V]
|
|
|
|
|
[Module K V] (M : Set V) {x : V} (h : x ∈ M) :
|
|
|
|
|
x ∈ span K M := by
|
|
|
|
|
rw [mem_span]
|
|
|
|
|
intro p hp
|
|
|
|
|
specialize hp h
|
|
|
|
|
assumption
|