You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
|
|
import TestGame.Metadata
|
|
|
|
|
|
|
|
|
|
import Mathlib.Data.Set.Basic
|
|
|
|
|
import Mathlib.Algebra.Parity
|
|
|
|
|
import Mathlib.Tactic.Ring
|
|
|
|
|
|
|
|
|
|
import TestGame.ToBePorted
|
|
|
|
|
|
|
|
|
|
Game "TestGame"
|
|
|
|
|
World "SetTheory2"
|
|
|
|
|
Level 2
|
|
|
|
|
|
|
|
|
|
Title "Potenzmenge"
|
|
|
|
|
|
|
|
|
|
Introduction
|
|
|
|
|
"
|
|
|
|
|
Eine andere wichtige Menge ist die Potenzmenge einer Menge, welche als
|
|
|
|
|
`𝒫 A` geschrieben wird (`\\powerset`). Diese ist als `{S | S ⊆ A}` definiert, also
|
|
|
|
|
alle Mengen, die in $A$ enthalten sind.
|
|
|
|
|
|
|
|
|
|
Eines der wichtigsten Lemmas ist `mem_powerset_iff: x ∈ 𝒫 s ↔ x ⊆ s` welches
|
|
|
|
|
im Grunde die Definition einsetzt.
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
open Set
|
|
|
|
|
|
|
|
|
|
Statement
|
|
|
|
|
"" (X Y : Set ℕ):
|
|
|
|
|
𝒫 X ∪ 𝒫 Y ⊆ 𝒫 (X ∪ Y) := by
|
|
|
|
|
intro A hA
|
|
|
|
|
rw [mem_union] at hA
|
|
|
|
|
simp_rw [mem_powerset_iff] at *
|
|
|
|
|
rcases hA with hA | hA
|
|
|
|
|
apply subset_union_of_subset_left
|
|
|
|
|
assumption
|
|
|
|
|
apply subset_union_of_subset_right
|
|
|
|
|
assumption
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NewTactics constructor intro rw assumption rcases simp tauto trivial
|
|
|
|
|
|
|
|
|
|
NewLemmas Subset.antisymm_iff empty_subset
|