|
|
|
@ -5,6 +5,8 @@ LemmaDoc not_not as "not_not" in "Logic"
|
|
|
|
|
"
|
|
|
|
|
`not_not {A : Prop} : ¬¬A ↔ A`
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma: Ja
|
|
|
|
|
* Namespace: `Classical`
|
|
|
|
|
* Minimal Import: `Std.Logic`
|
|
|
|
@ -16,6 +18,8 @@ LemmaDoc not_or_of_imp as "not_or_of_imp" in "Logic"
|
|
|
|
|
"
|
|
|
|
|
`not_or_of_imp {A B : Prop} : (A → B) → ¬A ∨ B`
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma: Nein
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.Logic.Basic`
|
|
|
|
@ -27,6 +31,8 @@ LemmaDoc imp_iff_not_or as "imp_iff_not_or" in "Logic"
|
|
|
|
|
"
|
|
|
|
|
`imp_iff_not_or {A B : Prop} : (A → B) ↔ (¬A ∨ B)`
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma: Nein
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.Logic.Basic`
|
|
|
|
@ -51,6 +57,8 @@ LemmaDoc Nat.pos_iff_ne_zero as "pos_iff_ne_zero" in "Nat"
|
|
|
|
|
"
|
|
|
|
|
`Nat.pos_iff_ne_zero {n : ℕ} : 0 < n ↔ n ≠ 0`
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma: Nein
|
|
|
|
|
* Namespace: `Nat`
|
|
|
|
|
* Minimal Import: `Std.Data.Nat.Lemmas`
|
|
|
|
@ -59,8 +67,10 @@ LemmaDoc Nat.pos_iff_ne_zero as "pos_iff_ne_zero" in "Nat"
|
|
|
|
|
|
|
|
|
|
-- TODO: Not minimal description
|
|
|
|
|
LemmaDoc zero_add as "zero_add" in "Addition"
|
|
|
|
|
"zero_add (a : ℕ) : 0 + a = a`.
|
|
|
|
|
"
|
|
|
|
|
`zero_add (a : ℕ) : 0 + a = a`
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma: Ja
|
|
|
|
|
* Namespace: `-`
|
|
|
|
@ -69,7 +79,10 @@ LemmaDoc zero_add as "zero_add" in "Addition"
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
LemmaDoc add_zero as "add_zero" in "Addition"
|
|
|
|
|
"This lemma says `∀ a : ℕ, a + 0 = a`.
|
|
|
|
|
"
|
|
|
|
|
This lemma says `∀ a : ℕ, a + 0 = a`.
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
@ -79,6 +92,8 @@ LemmaDoc add_zero as "add_zero" in "Addition"
|
|
|
|
|
LemmaDoc add_succ as "add_succ" in "Addition"
|
|
|
|
|
"This lemma says `∀ a b : ℕ, a + succ b = succ (a + b)`.
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
@ -88,6 +103,8 @@ LemmaDoc not_forall as "not_forall" in "Logic"
|
|
|
|
|
"
|
|
|
|
|
`not_forall {α : Sort _} {P : α → Prop} : ¬(∀ x, → P x) ↔ ∃ x, ¬P x`
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma: Ja
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.Logic.Basic`
|
|
|
|
@ -95,82 +112,139 @@ LemmaDoc not_forall as "not_forall" in "Logic"
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
LemmaDoc not_exists as "not_exists" in "Logic"
|
|
|
|
|
"`∀ (A : Prop), ¬(∃ x, A) ↔ ∀x, (¬A)`.
|
|
|
|
|
"
|
|
|
|
|
`not_exists {α : Sort _} {P : α → Prop} : (¬∃ x, P x) ↔ ∀ (x : α), ¬P x.
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma: Ja
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
|
* Mathlib Doc: [#]()"
|
|
|
|
|
* Minimal Import: `Std.Logic`
|
|
|
|
|
* Mathlib Doc: [#not_exists](https://leanprover-community.github.io/mathlib4_docs/Std/Logic.html#not_exists)"
|
|
|
|
|
|
|
|
|
|
LemmaDoc even_iff_not_odd as "even_iff_not_odd" in "Nat"
|
|
|
|
|
"`Even n ↔ ¬ (Odd n)`
|
|
|
|
|
LemmaDoc Nat.even_iff_not_odd as "even_iff_not_odd" in "Nat"
|
|
|
|
|
"
|
|
|
|
|
`even_iff_not_odd {n : ℕ} : Even n ↔ ¬Odd n`
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
|
* Mathlib Doc: [#]()"
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
LemmaDoc odd_iff_not_even as "odd_iff_not_even" in "Nat"
|
|
|
|
|
"`Odd n ↔ ¬ (Even n)`
|
|
|
|
|
* `simp`-Lemma: Nein
|
|
|
|
|
* Namespace: `Nat`
|
|
|
|
|
* Minimal Import: `Mathlib.Data.Nat.Parity`
|
|
|
|
|
* Mathlib Doc: [#Nat.even_iff_not_odd](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Nat/Parity.html#Nat.even_iff_not_odd)"
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
|
* Mathlib Doc: [#]()"
|
|
|
|
|
LemmaDoc Nat.odd_iff_not_even as "odd_iff_not_even" in "Nat"
|
|
|
|
|
"
|
|
|
|
|
`Nat.odd_iff_not_even {n : ℕ} : Odd n ↔ ¬Even n`
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma: Ja
|
|
|
|
|
* Namespace: `Nat`
|
|
|
|
|
* Minimal Import: `Mathlib.Data.Nat.Parity`
|
|
|
|
|
* Mathlib Doc: [#Nat.odd_iff_not_even](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Nat/Parity.html#Nat.odd_iff_not_even)"
|
|
|
|
|
|
|
|
|
|
LemmaDoc even_square as "even_square" in "Nat"
|
|
|
|
|
"`∀ (n : ℕ), Even n → Even (n ^ 2)`
|
|
|
|
|
"
|
|
|
|
|
`even_square : (n : ℕ), Even n → Even (n ^ 2)`
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
|
* Mathlib Doc: [#]()
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma: Nein
|
|
|
|
|
* *Nicht in Mathlib*
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LemmaDoc mem_univ as "mem_univ" in "Set"
|
|
|
|
|
"x ∈ @univ α
|
|
|
|
|
LemmaDoc Set.mem_univ as "mem_univ" in "Set"
|
|
|
|
|
"
|
|
|
|
|
`Set.mem_univ {α : Type _} (x : α) : x ∈ @univ α`
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
|
* Mathlib Doc: [#]()
|
|
|
|
|
Jedes Element ist in `univ`, der Menge aller Elemente eines Typs `α`.
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma: Ja
|
|
|
|
|
* Namespace: `Set`
|
|
|
|
|
* Minimal Import: `Mathlib.Data.Set.Basic`
|
|
|
|
|
* Mathlib Doc: [#mem_univ](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Set/Basic.html#Set.mem_univ)
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
LemmaDoc not_mem_empty as "not_mem_empty" in "Set"
|
|
|
|
|
"
|
|
|
|
|
`Set.not_mem_empty {α : Type _} (x : α) : x ∉ ∅`
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
|
* Mathlib Doc: [#]()
|
|
|
|
|
Kein Element ist in der leeren Menge.
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma: Nein
|
|
|
|
|
* Namespace: `Set`
|
|
|
|
|
* Minimal Import: `Mathlib.Data.Set.Basic`
|
|
|
|
|
* Mathlib Doc: [#not_mem_empty](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Set/Basic.html#Set.not_mem_empty)
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
LemmaDoc empty_subset as "empty_subset" in "Set"
|
|
|
|
|
"
|
|
|
|
|
`Set.empty_subset {α : Type u} (s : Set α) : ∅ ⊆ s`
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
|
* Mathlib Doc: [#]()
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma: Ja
|
|
|
|
|
* Namespace: `Set`
|
|
|
|
|
* Minimal Import: `Mathlib.Data.Set.Basic`
|
|
|
|
|
* Mathlib Doc: [#empty_subset](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Set/Basic.html#Set.empty_subset)
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
LemmaDoc Subset.antisymm_iff as "Subset.antisymm_iff" in "Set"
|
|
|
|
|
LemmaDoc Subset.antisymm as "Subset.antisymm" in "Set"
|
|
|
|
|
"
|
|
|
|
|
`Set.Subset.antisymm {α : Type u} {a : Set α} {b : Set α} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b`
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
|
* Mathlib Doc: [#]()
|
|
|
|
|
Zwei Mengen sind identisch, wenn sowohl $A \\subseteq B$ wie auch $B \\subseteq A$.
|
|
|
|
|
## Details
|
|
|
|
|
|
|
|
|
|
`apply Subset.antisymm` ist eine Möglichkeit Gleichungen von Mengen zu zeigen.
|
|
|
|
|
eine andere ist `ext i`, welches Elementweise funktiniert.
|
|
|
|
|
Siehe auch
|
|
|
|
|
[`#Subset.antisymm_iff`](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Set/Basic.html#Set.Subset.antisymm_iff)
|
|
|
|
|
für die Iff-Version.
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma: Nein
|
|
|
|
|
* Namespace: `Set.Subset`
|
|
|
|
|
* Minimal Import: `Mathlib.Data.Set.Basic`
|
|
|
|
|
* Mathlib Doc: [#Subset.antisymm](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Set/Basic.html#Set.Subset.antisymm)
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
LemmaDoc Subset.antisymm_iff as "Subset.antisymm_iff" in "Set"
|
|
|
|
|
"
|
|
|
|
|
`Set.Subset.antisymm_iff {α : Type u} {a : Set α} {b : Set α} : a = b ↔ a ⊆ b ∧ b ⊆ a`
|
|
|
|
|
|
|
|
|
|
Zwei Mengen sind identisch, wenn sowohl $A \\subseteq B$ wie auch $B \\subseteq A$.
|
|
|
|
|
## Details
|
|
|
|
|
|
|
|
|
|
`rw [Subset.antisymm_iff]` ist eine Möglichkeit Gleichungen von Mengen zu zeigen.
|
|
|
|
|
eine andere ist `ext i`, welches Elementweise funktiniert.
|
|
|
|
|
Siehe auch
|
|
|
|
|
[`#Subset.antisymm`](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Set/Basic.html#Set.Subset.antisymm)
|
|
|
|
|
für eine verwandte Version.
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma: Nein
|
|
|
|
|
* Namespace: `Set.Subset`
|
|
|
|
|
* Minimal Import: `Mathlib.Data.Set.Basic`
|
|
|
|
|
* Mathlib Doc: [#Subset.antisymm_iff](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Set/Basic.html#Set.Subset.antisymm_iff)
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LemmaDoc Nat.prime_def_lt'' as "Nat.prime_def_lt''" in "Nat"
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
@ -181,6 +255,8 @@ LemmaDoc Nat.prime_def_lt'' as "Nat.prime_def_lt''" in "Nat"
|
|
|
|
|
LemmaDoc Finset.sum_add_distrib as "Finset.sum_add_distrib" in "Sum"
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
@ -190,6 +266,8 @@ LemmaDoc Finset.sum_add_distrib as "Finset.sum_add_distrib" in "Sum"
|
|
|
|
|
LemmaDoc Fin.sum_univ_castSucc as "Fin.sum_univ_castSucc" in "Sum"
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
@ -199,6 +277,8 @@ LemmaDoc Fin.sum_univ_castSucc as "Fin.sum_univ_castSucc" in "Sum"
|
|
|
|
|
LemmaDoc Nat.succ_eq_add_one as "Nat.succ_eq_add_one" in "Sum"
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
@ -208,6 +288,8 @@ LemmaDoc Nat.succ_eq_add_one as "Nat.succ_eq_add_one" in "Sum"
|
|
|
|
|
LemmaDoc Nat.zero_eq as "Nat.succ_eq_add_one" in "Sum"
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
@ -217,6 +299,8 @@ LemmaDoc Nat.zero_eq as "Nat.succ_eq_add_one" in "Sum"
|
|
|
|
|
LemmaDoc add_comm as "add_comm" in "Nat"
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
@ -226,6 +310,8 @@ LemmaDoc add_comm as "add_comm" in "Nat"
|
|
|
|
|
LemmaDoc mul_add as "mul_add" in "Nat"
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
@ -235,6 +321,8 @@ LemmaDoc mul_add as "mul_add" in "Nat"
|
|
|
|
|
LemmaDoc add_mul as "add_mul" in "Nat"
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
@ -244,6 +332,8 @@ LemmaDoc add_mul as "add_mul" in "Nat"
|
|
|
|
|
LemmaDoc arithmetic_sum as "arithmetic_sum" in "Sum"
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
@ -253,6 +343,8 @@ LemmaDoc arithmetic_sum as "arithmetic_sum" in "Sum"
|
|
|
|
|
LemmaDoc add_pow_two as "add_pow_two" in "Nat"
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
@ -262,6 +354,8 @@ LemmaDoc add_pow_two as "add_pow_two" in "Nat"
|
|
|
|
|
LemmaDoc Finset.sum_comm as "Finset.sum_comm" in "Sum"
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
@ -271,6 +365,8 @@ LemmaDoc Finset.sum_comm as "Finset.sum_comm" in "Sum"
|
|
|
|
|
LemmaDoc Function.comp_apply as "Function.comp_apply" in "Function"
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
@ -280,6 +376,8 @@ LemmaDoc Function.comp_apply as "Function.comp_apply" in "Function"
|
|
|
|
|
LemmaDoc not_le as "not_le" in "Logic"
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
@ -289,6 +387,8 @@ LemmaDoc not_le as "not_le" in "Logic"
|
|
|
|
|
LemmaDoc if_pos as "if_pos" in "Logic"
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
@ -298,6 +398,8 @@ LemmaDoc if_pos as "if_pos" in "Logic"
|
|
|
|
|
LemmaDoc if_neg as "if_neg" in "Logic"
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
@ -307,6 +409,8 @@ LemmaDoc if_neg as "if_neg" in "Logic"
|
|
|
|
|
LemmaDoc StrictMono.injective as "StrictMono.injective" in "Function"
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
@ -316,6 +420,8 @@ LemmaDoc StrictMono.injective as "StrictMono.injective" in "Function"
|
|
|
|
|
LemmaDoc StrictMono.add as "StrictMono.add" in "Function"
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
@ -325,6 +431,8 @@ LemmaDoc StrictMono.add as "StrictMono.add" in "Function"
|
|
|
|
|
LemmaDoc Odd.strictMono_pow as "Odd.strictMono_pow" in "Function"
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
@ -334,6 +442,8 @@ LemmaDoc Odd.strictMono_pow as "Odd.strictMono_pow" in "Function"
|
|
|
|
|
LemmaDoc Exists.choose as "Exists.choose" in "Function"
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
@ -343,6 +453,8 @@ LemmaDoc Exists.choose as "Exists.choose" in "Function"
|
|
|
|
|
LemmaDoc Exists.choose_spec as "Exists.choose_spec" in "Function"
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
@ -351,6 +463,8 @@ LemmaDoc Exists.choose_spec as "Exists.choose_spec" in "Function"
|
|
|
|
|
LemmaDoc congrArg as "congrArg" in "Function"
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
@ -359,6 +473,8 @@ LemmaDoc congrArg as "congrArg" in "Function"
|
|
|
|
|
LemmaDoc congrFun as "congrFun" in "Function"
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
@ -368,6 +484,8 @@ LemmaDoc congrFun as "congrFun" in "Function"
|
|
|
|
|
LemmaDoc Iff.symm as "Iff.symm" in "Logic"
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
@ -382,6 +500,8 @@ DefinitionDoc Even as "Even"
|
|
|
|
|
"
|
|
|
|
|
`even n` ist definiert als `∃ r, a = 2 * r`.
|
|
|
|
|
Die Definition kann man mit `unfold even at *` einsetzen.
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
@ -415,6 +535,8 @@ DefinitionDoc Surjective as "Surjective"
|
|
|
|
|
DefinitionDoc Bijective as "Bijective"
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
@ -424,6 +546,8 @@ DefinitionDoc Bijective as "Bijective"
|
|
|
|
|
DefinitionDoc LeftInverse as "LeftInverse"
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
@ -433,6 +557,8 @@ DefinitionDoc LeftInverse as "LeftInverse"
|
|
|
|
|
DefinitionDoc RightInverse as "RightInverse"
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
## Eigenschaften
|
|
|
|
|
|
|
|
|
|
* `simp`-Lemma:
|
|
|
|
|
* Namespace: `-`
|
|
|
|
|
* Minimal Import: `Mathlib.`
|
|
|
|
|