lemma docs

pull/54/head
Jon Eugster 2 years ago
parent c947ef20d7
commit ae58652fa9

@ -5,6 +5,8 @@ LemmaDoc not_not as "not_not" in "Logic"
"
`not_not {A : Prop} : ¬¬A ↔ A`
## Eigenschaften
* `simp`-Lemma: Ja
* Namespace: `Classical`
* Minimal Import: `Std.Logic`
@ -16,6 +18,8 @@ LemmaDoc not_or_of_imp as "not_or_of_imp" in "Logic"
"
`not_or_of_imp {A B : Prop} : (A → B) → ¬A B`
## Eigenschaften
* `simp`-Lemma: Nein
* Namespace: `-`
* Minimal Import: `Mathlib.Logic.Basic`
@ -27,6 +31,8 @@ LemmaDoc imp_iff_not_or as "imp_iff_not_or" in "Logic"
"
`imp_iff_not_or {A B : Prop} : (A → B) ↔ (¬A B)`
## Eigenschaften
* `simp`-Lemma: Nein
* Namespace: `-`
* Minimal Import: `Mathlib.Logic.Basic`
@ -51,6 +57,8 @@ LemmaDoc Nat.pos_iff_ne_zero as "pos_iff_ne_zero" in "Nat"
"
`Nat.pos_iff_ne_zero {n : } : 0 < n ↔ n ≠ 0`
## Eigenschaften
* `simp`-Lemma: Nein
* Namespace: `Nat`
* Minimal Import: `Std.Data.Nat.Lemmas`
@ -59,8 +67,10 @@ LemmaDoc Nat.pos_iff_ne_zero as "pos_iff_ne_zero" in "Nat"
-- TODO: Not minimal description
LemmaDoc zero_add as "zero_add" in "Addition"
"zero_add (a : ) : 0 + a = a`.
"
`zero_add (a : ) : 0 + a = a`
## Eigenschaften
* `simp`-Lemma: Ja
* Namespace: `-`
@ -69,7 +79,10 @@ LemmaDoc zero_add as "zero_add" in "Addition"
"
LemmaDoc add_zero as "add_zero" in "Addition"
"This lemma says `∀ a : , a + 0 = a`.
"
This lemma says `∀ a : , a + 0 = a`.
## Eigenschaften
* `simp`-Lemma:
* Namespace: `-`
@ -79,6 +92,8 @@ LemmaDoc add_zero as "add_zero" in "Addition"
LemmaDoc add_succ as "add_succ" in "Addition"
"This lemma says `∀ a b : , a + succ b = succ (a + b)`.
## Eigenschaften
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
@ -88,6 +103,8 @@ LemmaDoc not_forall as "not_forall" in "Logic"
"
`not_forall {α : Sort _} {P : α → Prop} : ¬(∀ x, → P x) ↔ ∃ x, ¬P x`
## Eigenschaften
* `simp`-Lemma: Ja
* Namespace: `-`
* Minimal Import: `Mathlib.Logic.Basic`
@ -95,82 +112,139 @@ LemmaDoc not_forall as "not_forall" in "Logic"
"
LemmaDoc not_exists as "not_exists" in "Logic"
"`∀ (A : Prop), ¬(∃ x, A) ↔ ∀x, (¬A)`.
"
`not_exists {α : Sort _} {P : α → Prop} : (¬∃ x, P x) ↔ ∀ (x : α), ¬P x.
* `simp`-Lemma:
## Eigenschaften
* `simp`-Lemma: Ja
* Namespace: `-`
* Minimal Import: `Mathlib.`
* Mathlib Doc: [#]()"
* Minimal Import: `Std.Logic`
* Mathlib Doc: [#not_exists](https://leanprover-community.github.io/mathlib4_docs/Std/Logic.html#not_exists)"
LemmaDoc even_iff_not_odd as "even_iff_not_odd" in "Nat"
"`Even n ↔ ¬ (Odd n)`
LemmaDoc Nat.even_iff_not_odd as "even_iff_not_odd" in "Nat"
"
`even_iff_not_odd {n : } : Even n ↔ ¬Odd n`
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
* Mathlib Doc: [#]()"
## Eigenschaften
LemmaDoc odd_iff_not_even as "odd_iff_not_even" in "Nat"
"`Odd n ↔ ¬ (Even n)`
* `simp`-Lemma: Nein
* Namespace: `Nat`
* Minimal Import: `Mathlib.Data.Nat.Parity`
* Mathlib Doc: [#Nat.even_iff_not_odd](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Nat/Parity.html#Nat.even_iff_not_odd)"
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
* Mathlib Doc: [#]()"
LemmaDoc Nat.odd_iff_not_even as "odd_iff_not_even" in "Nat"
"
`Nat.odd_iff_not_even {n : } : Odd n ↔ ¬Even n`
## Eigenschaften
* `simp`-Lemma: Ja
* Namespace: `Nat`
* Minimal Import: `Mathlib.Data.Nat.Parity`
* Mathlib Doc: [#Nat.odd_iff_not_even](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Nat/Parity.html#Nat.odd_iff_not_even)"
LemmaDoc even_square as "even_square" in "Nat"
"`∀ (n : ), Even n → Even (n ^ 2)`
"
`even_square : (n : ), Even n → Even (n ^ 2)`
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
* Mathlib Doc: [#]()
## Eigenschaften
* `simp`-Lemma: Nein
* *Nicht in Mathlib*
"
LemmaDoc mem_univ as "mem_univ" in "Set"
"x ∈ @univ α
LemmaDoc Set.mem_univ as "mem_univ" in "Set"
"
`Set.mem_univ {α : Type _} (x : α) : x ∈ @univ α`
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
* Mathlib Doc: [#]()
Jedes Element ist in `univ`, der Menge aller Elemente eines Typs `α`.
## Eigenschaften
* `simp`-Lemma: Ja
* Namespace: `Set`
* Minimal Import: `Mathlib.Data.Set.Basic`
* Mathlib Doc: [#mem_univ](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Set/Basic.html#Set.mem_univ)
"
LemmaDoc not_mem_empty as "not_mem_empty" in "Set"
"
`Set.not_mem_empty {α : Type _} (x : α) : x ∉ ∅`
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
* Mathlib Doc: [#]()
Kein Element ist in der leeren Menge.
## Eigenschaften
* `simp`-Lemma: Nein
* Namespace: `Set`
* Minimal Import: `Mathlib.Data.Set.Basic`
* Mathlib Doc: [#not_mem_empty](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Set/Basic.html#Set.not_mem_empty)
"
LemmaDoc empty_subset as "empty_subset" in "Set"
"
`Set.empty_subset {α : Type u} (s : Set α) : ∅ ⊆ s`
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
* Mathlib Doc: [#]()
## Eigenschaften
* `simp`-Lemma: Ja
* Namespace: `Set`
* Minimal Import: `Mathlib.Data.Set.Basic`
* Mathlib Doc: [#empty_subset](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Set/Basic.html#Set.empty_subset)
"
LemmaDoc Subset.antisymm_iff as "Subset.antisymm_iff" in "Set"
LemmaDoc Subset.antisymm as "Subset.antisymm" in "Set"
"
`Set.Subset.antisymm {α : Type u} {a : Set α} {b : Set α} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b`
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
* Mathlib Doc: [#]()
Zwei Mengen sind identisch, wenn sowohl $A \\subseteq B$ wie auch $B \\subseteq A$.
## Details
`apply Subset.antisymm` ist eine Möglichkeit Gleichungen von Mengen zu zeigen.
eine andere ist `ext i`, welches Elementweise funktiniert.
Siehe auch
[`#Subset.antisymm_iff`](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Set/Basic.html#Set.Subset.antisymm_iff)
für die Iff-Version.
## Eigenschaften
* `simp`-Lemma: Nein
* Namespace: `Set.Subset`
* Minimal Import: `Mathlib.Data.Set.Basic`
* Mathlib Doc: [#Subset.antisymm](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Set/Basic.html#Set.Subset.antisymm)
"
LemmaDoc Subset.antisymm_iff as "Subset.antisymm_iff" in "Set"
"
`Set.Subset.antisymm_iff {α : Type u} {a : Set α} {b : Set α} : a = b ↔ a ⊆ b ∧ b ⊆ a`
Zwei Mengen sind identisch, wenn sowohl $A \\subseteq B$ wie auch $B \\subseteq A$.
## Details
`rw [Subset.antisymm_iff]` ist eine Möglichkeit Gleichungen von Mengen zu zeigen.
eine andere ist `ext i`, welches Elementweise funktiniert.
Siehe auch
[`#Subset.antisymm`](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Set/Basic.html#Set.Subset.antisymm)
für eine verwandte Version.
## Eigenschaften
* `simp`-Lemma: Nein
* Namespace: `Set.Subset`
* Minimal Import: `Mathlib.Data.Set.Basic`
* Mathlib Doc: [#Subset.antisymm_iff](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Set/Basic.html#Set.Subset.antisymm_iff)
"
LemmaDoc Nat.prime_def_lt'' as "Nat.prime_def_lt''" in "Nat"
"
## Eigenschaften
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
@ -181,6 +255,8 @@ LemmaDoc Nat.prime_def_lt'' as "Nat.prime_def_lt''" in "Nat"
LemmaDoc Finset.sum_add_distrib as "Finset.sum_add_distrib" in "Sum"
"
## Eigenschaften
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
@ -190,6 +266,8 @@ LemmaDoc Finset.sum_add_distrib as "Finset.sum_add_distrib" in "Sum"
LemmaDoc Fin.sum_univ_castSucc as "Fin.sum_univ_castSucc" in "Sum"
"
## Eigenschaften
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
@ -199,6 +277,8 @@ LemmaDoc Fin.sum_univ_castSucc as "Fin.sum_univ_castSucc" in "Sum"
LemmaDoc Nat.succ_eq_add_one as "Nat.succ_eq_add_one" in "Sum"
"
## Eigenschaften
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
@ -208,6 +288,8 @@ LemmaDoc Nat.succ_eq_add_one as "Nat.succ_eq_add_one" in "Sum"
LemmaDoc Nat.zero_eq as "Nat.succ_eq_add_one" in "Sum"
"
## Eigenschaften
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
@ -217,6 +299,8 @@ LemmaDoc Nat.zero_eq as "Nat.succ_eq_add_one" in "Sum"
LemmaDoc add_comm as "add_comm" in "Nat"
"
## Eigenschaften
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
@ -226,6 +310,8 @@ LemmaDoc add_comm as "add_comm" in "Nat"
LemmaDoc mul_add as "mul_add" in "Nat"
"
## Eigenschaften
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
@ -235,6 +321,8 @@ LemmaDoc mul_add as "mul_add" in "Nat"
LemmaDoc add_mul as "add_mul" in "Nat"
"
## Eigenschaften
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
@ -244,6 +332,8 @@ LemmaDoc add_mul as "add_mul" in "Nat"
LemmaDoc arithmetic_sum as "arithmetic_sum" in "Sum"
"
## Eigenschaften
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
@ -253,6 +343,8 @@ LemmaDoc arithmetic_sum as "arithmetic_sum" in "Sum"
LemmaDoc add_pow_two as "add_pow_two" in "Nat"
"
## Eigenschaften
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
@ -262,6 +354,8 @@ LemmaDoc add_pow_two as "add_pow_two" in "Nat"
LemmaDoc Finset.sum_comm as "Finset.sum_comm" in "Sum"
"
## Eigenschaften
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
@ -271,6 +365,8 @@ LemmaDoc Finset.sum_comm as "Finset.sum_comm" in "Sum"
LemmaDoc Function.comp_apply as "Function.comp_apply" in "Function"
"
## Eigenschaften
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
@ -280,6 +376,8 @@ LemmaDoc Function.comp_apply as "Function.comp_apply" in "Function"
LemmaDoc not_le as "not_le" in "Logic"
"
## Eigenschaften
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
@ -289,6 +387,8 @@ LemmaDoc not_le as "not_le" in "Logic"
LemmaDoc if_pos as "if_pos" in "Logic"
"
## Eigenschaften
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
@ -298,6 +398,8 @@ LemmaDoc if_pos as "if_pos" in "Logic"
LemmaDoc if_neg as "if_neg" in "Logic"
"
## Eigenschaften
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
@ -307,6 +409,8 @@ LemmaDoc if_neg as "if_neg" in "Logic"
LemmaDoc StrictMono.injective as "StrictMono.injective" in "Function"
"
## Eigenschaften
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
@ -316,6 +420,8 @@ LemmaDoc StrictMono.injective as "StrictMono.injective" in "Function"
LemmaDoc StrictMono.add as "StrictMono.add" in "Function"
"
## Eigenschaften
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
@ -325,6 +431,8 @@ LemmaDoc StrictMono.add as "StrictMono.add" in "Function"
LemmaDoc Odd.strictMono_pow as "Odd.strictMono_pow" in "Function"
"
## Eigenschaften
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
@ -334,6 +442,8 @@ LemmaDoc Odd.strictMono_pow as "Odd.strictMono_pow" in "Function"
LemmaDoc Exists.choose as "Exists.choose" in "Function"
"
## Eigenschaften
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
@ -343,6 +453,8 @@ LemmaDoc Exists.choose as "Exists.choose" in "Function"
LemmaDoc Exists.choose_spec as "Exists.choose_spec" in "Function"
"
## Eigenschaften
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
@ -351,6 +463,8 @@ LemmaDoc Exists.choose_spec as "Exists.choose_spec" in "Function"
LemmaDoc congrArg as "congrArg" in "Function"
"
## Eigenschaften
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
@ -359,6 +473,8 @@ LemmaDoc congrArg as "congrArg" in "Function"
LemmaDoc congrFun as "congrFun" in "Function"
"
## Eigenschaften
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
@ -368,6 +484,8 @@ LemmaDoc congrFun as "congrFun" in "Function"
LemmaDoc Iff.symm as "Iff.symm" in "Logic"
"
## Eigenschaften
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
@ -382,6 +500,8 @@ DefinitionDoc Even as "Even"
"
`even n` ist definiert als `∃ r, a = 2 * r`.
Die Definition kann man mit `unfold even at *` einsetzen.
## Eigenschaften
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
@ -415,6 +535,8 @@ DefinitionDoc Surjective as "Surjective"
DefinitionDoc Bijective as "Bijective"
"
## Eigenschaften
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
@ -424,6 +546,8 @@ DefinitionDoc Bijective as "Bijective"
DefinitionDoc LeftInverse as "LeftInverse"
"
## Eigenschaften
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`
@ -433,6 +557,8 @@ DefinitionDoc LeftInverse as "LeftInverse"
DefinitionDoc RightInverse as "RightInverse"
"
## Eigenschaften
* `simp`-Lemma:
* Namespace: `-`
* Minimal Import: `Mathlib.`

@ -106,4 +106,4 @@ ist deine!
"
NewTactic push_neg
NewLemma even_iff_not_odd odd_iff_not_even not_exists not_forall
NewLemma Nat.even_iff_not_odd Nat.odd_iff_not_even not_exists not_forall

@ -26,7 +26,7 @@ Statement not_mem_empty "" {A : Type} (x : A) :
**Robo**: Dann behaupte das doch."
tauto
NewLemma mem_univ
NewLemma Set.mem_univ
Conclusion "Der Junge rennt weiter.

@ -52,8 +52,7 @@ Statement subset_empty_iff {A : Type _} (s : Set A) :
constructor
intro h
rw [Subset.antisymm_iff]
constructor
apply Subset.antisymm
assumption
simp only [empty_subset]
intro a
@ -63,6 +62,6 @@ Statement subset_empty_iff {A : Type _} (s : Set A) :
NewTactic constructor intro rw assumption rcases simp tauto trivial
NewLemma Subset.antisymm_iff empty_subset
NewLemma Subset.antisymm empty_subset
end MySet

@ -47,6 +47,4 @@ Statement eq_empty_iff_forall_not_mem
NewTactic constructor intro rw assumption rcases simp tauto trivial
NewLemma Subset.antisymm_iff empty_subset
end MySet

@ -31,5 +31,3 @@ Statement nonempty_iff_ne_empty
rfl
NewTactic constructor intro rw assumption rcases simp tauto trivial
NewLemma Subset.antisymm_iff empty_subset

@ -27,5 +27,3 @@ Statement
simp
NewTactic constructor intro rw assumption rcases simp tauto trivial
NewLemma Subset.antisymm_iff empty_subset

@ -31,5 +31,3 @@ Statement
rw [univ_union]
NewTactic constructor intro rw assumption rcases simp tauto trivial
NewLemma Subset.antisymm_iff empty_subset

@ -31,5 +31,3 @@ Statement
exact h4
NewTactic constructor intro rw assumption rcases simp tauto trivial
NewLemma Subset.antisymm_iff empty_subset

@ -34,5 +34,3 @@ Statement
exact hx
NewTactic constructor intro rw assumption rcases simp tauto trivial
NewLemma Subset.antisymm_iff empty_subset

@ -33,5 +33,3 @@ Statement
rfl
NewTactic constructor intro rw assumption rcases simp tauto trivial
NewLemma Subset.antisymm_iff empty_subset

@ -33,5 +33,3 @@ Statement
ring
NewTactic constructor intro rw assumption rcases simp tauto trivial
NewLemma Subset.antisymm_iff empty_subset

@ -38,5 +38,3 @@ Statement
NewTactic constructor intro rw assumption rcases simp tauto trivial
NewLemma Subset.antisymm_iff empty_subset

@ -37,5 +37,3 @@ Statement
NewTactic constructor intro rw assumption rcases simp tauto trivial
NewLemma Subset.antisymm_iff empty_subset

@ -35,5 +35,3 @@ Statement
NewTactic constructor intro rw assumption rcases simp tauto trivial
NewLemma Subset.antisymm_iff empty_subset

@ -29,5 +29,3 @@ Statement
library_search
NewTactic constructor intro rw assumption rcases simp tauto trivial
NewLemma Subset.antisymm_iff empty_subset

@ -24,5 +24,3 @@ Statement
ring
NewTactic constructor intro rw assumption rcases simp tauto trivial
NewLemma Subset.antisymm_iff empty_subset

@ -23,5 +23,3 @@ Statement
"" : True := sorry
NewTactic constructor intro rw assumption rcases simp tauto trivial
NewLemma Subset.antisymm_iff empty_subset

@ -24,5 +24,3 @@ Statement
ring
NewTactic constructor intro rw assumption rcases simp tauto trivial
NewLemma Subset.antisymm_iff empty_subset

Loading…
Cancel
Save