import TestGame.Metadata import Mathlib.Data.Set.Basic Game "TestGame" World "SetTheory" Level 9 Title "Komplement" Introduction " Das Komplement einer Menge wird als `Aᶜ` (`\\^c`) geschrieben. Wichtige Lemmas sind `not_mem_compl_iff` und `compl_eq_univ_diff`. " open Set #check not_mem_compl_iff #check compl_eq_univ_diff Statement "" (A : Set ℕ) (h : Aᶜ ⊆ A) : A = univ := by apply Subset.antisymm simp only [subset_univ] intros x hx by_cases h4 : x ∈ Aᶜ exact mem_of_subset_of_mem h h4 rw [←not_mem_compl_iff] exact h4 NewTactic constructor intro rw assumption rcases simp tauto trivial