import GameServer.Commands -- Wird im Level "Implication 11" ohne Beweis angenommen. LemmaDoc not_not as not_not in "Logic" " ### Aussage `¬¬A ↔ A` ### Annahmen `(A : Prop)` " -- Wird im Level "Implication 10" ohne Beweis angenommen. LemmaDoc not_or_of_imp as not_or_of_imp in "Logic" " ### Aussage `¬A ∨ B` ### Annahmen `(A B : Prop)`\\ `(h : A → B)` " -- Wird im Level "Implication 12" bewiesen. LemmaDoc imp_iff_not_or as imp_iff_not_or in "Logic" " ### Aussage `(A → B) ↔ ¬A ∨ B` ### Annahmen `(A B : Prop)` " LemmaDoc zero_add as zero_add in "Addition" "This lemma says `∀ a : ℕ, 0 + a = a`." LemmaDoc add_zero as add_zero in "Addition" "This lemma says `∀ a : ℕ, a + 0 = a`." LemmaDoc add_succ as add_succ in "Addition" "This lemma says `∀ a b : ℕ, a + succ b = succ (a + b)`." LemmaSet addition : "Addition lemmas" := zero_add add_zero LemmaDoc not_forall as not_forall in "Logic" "`∀ (A : Prop), ¬(∀ x, A) ↔ ∃x, (¬A)`." LemmaDoc not_exists as not_exists in "Logic" "`∀ (A : Prop), ¬(∃ x, A) ↔ ∀x, (¬A)`." LemmaDoc Even as Even in "Nat" " `even n` ist definiert als `∃ r, a = 2 * r`. Die Definition kann man mit `unfold even at *` einsetzen. " LemmaDoc Odd as Odd in "Nat" " `odd n` ist definiert als `∃ r, a = 2 * r + 1`. Die Definition kann man mit `unfold odd at *` einsetzen. " LemmaDoc not_odd as not_odd in "Nat" "`¬ (odd n) ↔ even n`" LemmaDoc not_even as not_even in "Nat" "`¬ (even n) ↔ odd n`" LemmaDoc even_square as even_square in "Nat" "`∀ (n : ℕ), even n → even (n ^ 2)`" LemmaDoc mem_univ as mem_univ in "Set" "x ∈ @univ α" LemmaDoc not_mem_empty as not_mem_empty in "Set" "" LemmaDoc empty_subset as empty_subset in "Set" "" LemmaDoc Subset.antisymm_iff as Subset.antisymm_iff in "Set" "" LemmaDoc Nat.prime_def_lt'' as Nat.prime_def_lt'' in "Nat" "" LemmaSet natural : "Natürliche Zahlen" := Even Odd not_odd not_even LemmaSet logic : "Logik" := not_not not_forall not_exists