import Adam.Metadata import Mathlib.Algebra.Module.Submodule.Lattice import Mathlib.Data.Real.Basic -- definiert `ℝ` import Mathlib.Algebra.Module.LinearMap -- definiert `→ₗ` import Mathlib.Tactic.FinCases import Mathlib.Data.Fin.VecNotation -- import Mathlib.LinearAlgebra.Finsupp import Mathlib.Algebra.BigOperators.Basic -- default -- import Mathlib.LinearAlgebra.LinearIndependent import Mathlib Game "Adam" World "Basis" Level 2 Title "Lineare Unabhängigkeit" namespace Ex_LinIndep scoped notation "ℝ²" => Fin 2 → ℝ Introduction " " Statement "Zeige, dass `![1, 0], ![1, 1]` linear unabhängig über `ℝ` sind." : LinearIndependent ℝ ![(![1, 0] : ℝ²), ![1, 1]] := by Hint "`rw [Fintype.linearIndependent_iff]`" rw [Fintype.linearIndependent_iff] Hint "`intros c h`" intros c h Hint "BUG: `simp at h` does not work :(" simp at h -- doesn't work sorry -- rw [Fintype.linearIndependent_iff] -- intros c h -- simp at h -- intros i -- fin_cases i -- swap -- { exact h.2 } -- { have h' := h.1 -- rw [h.2, add_zero] at h' -- exact h'} end Ex_LinIndep