import NNG.Metadata import NNG.MyNat.Addition open MyNat theorem MyNat.zero_add (n : ℕ) : 0 + n = n := by induction n with n hn · rw [add_zero] rfl · rw [add_succ] rw [hn] rfl theorem MyNat.add_assoc (a b c : ℕ) : (a + b) + c = a + (b + c) := by induction c with c hc · rw [add_zero] rw [add_zero] rfl · rw [add_succ] rw [add_succ] rw [add_succ] rw [hc] rfl theorem MyNat.succ_add (a b : ℕ) : succ a + b = succ (a + b) := by induction b with d hd · rw [add_zero] rfl · rw [add_succ] rw [hd] rw [add_succ] rfl theorem MyNat.add_comm (a b : ℕ) : a + b = b + a := by induction b with d hd · rw [zero_add] rw [add_zero] rfl · rw [add_succ] rw [hd] rw [succ_add] rfl theorem MyNat.one_eq_succ_zero : (1 : ℕ) = succ 0 := by rfl