import NNG.Metadata import NNG.MyNat.Addition import Std.Tactic.RCases import NNG.MyNat.Theorems.Proposition Game "NNG" World "AdvProposition" Level 9 Title "" open MyNat Introduction " " Statement contra "" (P Q : Prop) : (P ∧ ¬ P) → Q := by intro h rcases h with ⟨p, np ⟩ contradiction -- rw [not_iff_imp_false] at np -- exfalso -- apply np -- exact p NewTactic exfalso contradiction Conclusion " "