import TestGame.Metadata import Mathlib.Order.SymmDiff import Mathlib.Logic.Function.Iterate import Mathlib.Tactic.Use import Mathlib.Tactic.SolveByElim import Mathlib.Tactic.Tauto import Mathlib.Tactic.ByContra import Mathlib.Tactic.Lift import Mathlib.Data.Set.Basic import Mathlib.Data.Finset.Powerset import Mathlib.Tactic.LibrarySearch import Mathlib set_option tactic.hygienic false Game "TestGame" World "SetTheory" Level 1 Title "Mengen" Introduction " In diesem Kapitel schauen wir uns Mengen an. Zuerst ein ganz wichtiger Punkt: Alle Mengen in Lean sind homogen. Das heisst, alle Elemente in einer Menge haben den gleichen Typ. Zum Beispiel `{1, 4, 6}` ist eine Menge von natürlichen Zahlen. Aber man kann keine Menge `{(2 : ℕ), {3, 1}, \"e\", (1 : ℂ)}` definieren, da die Elemente unterschiedliche Typen haben. Für einen Typen `{X : Type*}` definiert damit also `set X` der Type aller Mengen mit Elementen aus `X`. `set.univ` ist dann ganz `X` also Menge betrachtet, und es ist wichtig den Unterschied zu kennen: `(univ : set X)` und `(X : Typ*)` haben nicht den gleichen Typ und sind damit auch nicht austauschbar! Am anderen Ende sitzt die leere Menge `(∅ : set X)` (`\\empty`). Bei `univ` und `∅` versucht Lean automatisch den Typ zu erraten, in exotischen Beispielen muss man wie oben diesen explizit angeben. Als erste Operationen schauen wir uns `∪` (`\\union` oder `\\cup`), `∩` (`\\inter` oder `\\cap`) und `\\` (`\\\\` oder `\\ `) " open Set Statement "Wenn $B$ wahr ist, dann ist die Implikation $A \\Rightarrow (A ∧ B)$ wahr." {X : Type _} {A B : Set X} : univ \ (A ∩ B) ∪ ∅ = (univ \ A) ∪ (univ \ B) ∪ (A \ B) := by rw [Set.diff_inter] rw [Set.union_empty] rw [Set.union_assoc] rw [←Set.union_diff_distrib] rw [Set.univ_union] NewTactics rw example : 4 ∈ (univ : Set ℕ) := by trivial example (A : Set ℕ) : 4 ∉ (∅ : Set ℕ) := by trivial example (A : Set ℕ) : A ⊆ univ := by intro x h trivial -- -- subset_empty_iff -- example {s : Set α} : s ⊆ ∅ ↔ s = ∅ := by -- constructor -- intro h -- rw [Subset.antisymm_iff] -- constructor -- assumption -- simp only [empty_subset] -- intro a -- rw [Subset.antisymm_iff] at a -- rcases a with ⟨h₁, h₂⟩ -- assumption -- -- eq_empty_iff_forall_not_mem -- example {s : Set α} : s = ∅ ↔ ∀ x, x ∉ s := by -- rw [←subset_empty_iff] -- rfl -- -- nonempty_iff_ne_empty -- example (X : Type _) (s : Set X) : Set.Nonempty s ↔ s ≠ ∅ := by -- rw [Set.Nonempty] -- rw [ne_eq, eq_empty_iff_forall_not_mem] -- push_neg -- rfl -- example (A B : ℝ): A = B ↔ A ≤ B ∧ B ≤ A := by library_search namespace Finset theorem powerset_singleton {U : Type _} [DecidableEq U] (x : U) : Finset.powerset {x} = {∅, {x}} := by ext y rw [mem_powerset, subset_singleton_iff, mem_insert, mem_singleton] end Finset /- The powerset of a singleton contains only `∅` and the singleton. -/ theorem powerset_singleton {U : Type _} (x : U) : 𝒫 ({x} : Set U) = {∅, {x}} := by ext y rw [mem_powerset_iff, subset_singleton_iff_eq] rw [mem_insert_iff, mem_singleton_iff] lemma mem_powerset_insert_iff {U : Type _} (A S : Set U) (x : U) : S ∈ 𝒫 (insert x A) ↔ S \ {x} ∈ 𝒫 A := by rw [mem_powerset_iff, mem_powerset_iff, diff_singleton_subset_iff] -- lemma powerset_insert {U : Type _} (A : Set U) (x : U) : -- 𝒫 (insert x A) = 𝒫 A ∪ ({B : Set U | B \ {x} ∈ 𝒫 A}) := by -- sorry theorem subset_insert_iff_of_not_mem {U : Type _ }{s t : Set U} (h : a ∉ s) : s ⊆ insert a t ↔ s ⊆ t := by rw [subset_insert_iff, erase_eq_of_not_mem h] lemma mem_powerset_insert_iff₂ {U : Type _} (A S : Set U) (x : U) : S ∈ 𝒫 (insert x A) ↔ S ∈ 𝒫 A ∨ ∃ B ∈ 𝒫 A , insert x B = S := by simp_rw [mem_powerset_iff] constructor · intro h by_cases hs : x ∈ S · sorry · left rw [Finset.subset_insert_iff_of_not_mem] · intro h rcases h with h | ⟨B, h₁, h₂⟩ · exact le_trans h (subset_insert x A) · rw [←h₂] exact insert_subset_insert h₁ lemma powerset_insert {U : Type _} (A : Set U) (x : U) : 𝒫 (insert x A) = A.powerset ∪ A.powerset.image (insert x) := by rw [Subset.antisymm_iff] constructor <;> intro B hB <;> simp_rw [mem_powerset_insert_iff₂, mem_union, mem_image] at hB ⊢ <;> assumption example : powerset {0, 1} = {∅, {0}, {1}, {0, 1}} := by simp_rw [powerset_insert, powerset_singleton, Finset.powerset_insert, Finset.powerset_singleton] simp only [image_insert_eq, union_insert, image_singleton, union_singleton] simp only [insert_comm, ←insert_emptyc_eq] example [DecidableEq ℕ] : Finset.powerset {0, 1} = {∅, {0}, {1}, {0, 1}} := by repeat' rw [@ Finset.powerset_insert ℕ] repeat' rw [@Finset.powerset_singleton ℕ] --simp only [image_insert_eq, union_insert, image_singleton, union_singleton] example : powerset {0, 1, 2, 4} = {∅, {0}, {1}, {0, 1}, {2}, {1, 2}, {0, 2}, {0, 1, 2}, {4}, {0, 4}, {1, 4}, {0, 1, 4}, {2, 4}, {1, 2, 4}, {0, 2, 4}, {0, 1, 2, 4}} := by simp_rw [powerset_insert, powerset_singleton] simp_rw [image_insert_eq, image_singleton] example : Finset.powerset ({0, 1} : Finset ℕ) = {{0, 1}, ∅, {1}, {0}} := by have h : Finset.powerset ({0, 1} : Finset ℕ) = {∅, {0}, {1}, {0, 1}} rfl rw [h] simp only [] example : ({∅, {0}, {1}, {0, 1}} : Finset (Finset ℕ)) = {∅, {1}, {0}, {0, 1}} := by simp only [] lemma subset_of_subset_diff {U : Type _} (A B C : Set U) (h : A ⊆ B \ C) : A ⊆ B := fun _ hx => mem_of_mem_diff (h hx) lemma subset_of_subset_diff' {U : Type _} (A B C : Set U) (h : A ⊆ B) : A \ C ⊆ B := sorry lemma mem_powerset' {U : Type _} {A B C : Set U} (h' : B ∈ 𝒫 C) (h : A ⊆ B) : A ∈ 𝒫 C := by rw [mem_powerset_iff] at h' ⊢ exact le_trans h h' example (A B : Set ℕ) : A = B ↔ ∀ x, x ∈ A ↔ x ∈ B := by exact ext_iff lemma NO.powerset_insert {U : Type _} (A : Set U) (x : U) : 𝒫 (insert x A) = 𝒫 A ∪ ({insert x B | B ∈ 𝒫 A}) := by ext y rw [mem_powerset_insert_iff] constructor · intro h rw [mem_union, mem_setOf] by_cases hx : x ∈ y · right use y \ {x} constructor · assumption · rw [insert_diff_singleton, insert_eq_of_mem hx] · left rw [diff_singleton_eq_self hx] at h assumption · intro h rw [mem_union, mem_setOf] at h rcases h with h | h · apply mem_powerset' h simp · rcases h with ⟨B, hB⟩ rw [←hB.2] apply mem_powerset' hB.1 simp -- lemma xxx {U : Type _} (x y : U): -- ({insert x B | B ∈ {∅, }}) = {({x} : Set U), {x, y}} := by -- sorry -- lemma hh {U : Type _} (A : Set U) (x : U) : -- A \ {x} ∈ lemma diff_singleton_eq_iff {U : Type _} {A B : Set U} {x : U} : A \ {x} = B ↔ A = B ∨ A = insert x B := by sorry lemma x1 {U : Type _} (x : U) : insert x (∅ : Set U) = {x} := by sorry --set_option maxHeartbeats 20000 example {U : Type _} {x y : U} : ({x, y} : Set U) = {y, x} := by exact pair_comm x y example {U : Type _} {A : Set U} {x y : U} : insert x (insert y A) = insert y (insert x A) := by exact insert_comm x y A open Classical #check decide example : ({{0, 2}, {3, 5, 6}} : Set (Set ℕ)) = {{2, 0}, {5, 3, 6}} := by rw [Subset.antisymm_iff] constructor <;> intro A hA <;> simp_rw [mem_insert_iff, mem_singleton_iff] at * · rw [pair_comm 2 0, insert_comm 5 3] tauto · rw [pair_comm 0 2, insert_comm 3 5] tauto example (A : Set ℕ) : ({{0, 2}, A, {3, 5, 6}} : Set (Set ℕ)) = {{2, 0}, {5, 3, 6}, A} := by simp only [insert_comm, ←insert_emptyc_eq] example : ({{0, 2}, {3, 5, 6}} : Finset (Finset ℕ)) = {{2, 0}, {5, 3, 6}} := by simp only -- -- This works but does not scale well -- ext x -- simp_rw [powerset_insert, powerset_singleton] -- simp_rw [mem_union, mem_setOf, mem_insert_iff, mem_singleton_iff] -- simp_rw [diff_singleton_eq_iff, x1] -- tauto -- rw [Subset.antisymm_iff] -- constructor -- intro A hA -- rw [mem_powerset_iff] at hA -- simp_rw [mem_insert_iff, mem_singleton_iff] at * example : ({2, 3, 5} : Set ℕ) ⊆ {4, 2, 5, 7, 3} := by intro a ha simp_rw [Set.mem_insert_iff, Set.mem_singleton_iff] at * tauto example : ({0} : Set ℕ) ∪ {1, 2} = {0, 2, 1} := by rw [Subset.antisymm_iff] intro A hA --rw [Set.mem_insert_iff] -- Trick: -- attribute [default_instance] Set.instSingletonSet