You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
lean4game/server/testgame/TestGame/Playground.lean

97 lines
2.0 KiB
Plaintext

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import Mathlib
open Function Set
example {A B : Type _ } (f : A → B) : f.Injective ↔ ∃ g : B → A, g ∘ f = id := by
constructor
· intro h
-- hard.
sorry
· intro h
rcases h with ⟨g, h⟩
unfold Injective
intro a b hab
rw [←id_eq a, ←id_eq b]
rw [← h]
rw [comp_apply]
rw [hab]
simp
lemma singleton_mem_powerset
{U : Type _} {M : Set U} {x : U} (h : x ∈ M) :
{x} ∈ 𝒫 M := by
rw [mem_powerset_iff, singleton_subset_iff]
assumption
example
{U : Type _} (M : Set U) :
{A : Set U // A ∈ 𝒫 M} = {A ∈ 𝒫 M | True} := by
simp_rw [coe_setOf, and_true]
example
{U : Type _} (M : Set U) :
{A : Set U // A ∈ 𝒫 M} = 𝒫 M := by
rfl
example
{U : Type _} (M : Set U) :
{x : U // x ∈ M} = M := by
rfl
example
{U : Type _} (M : Set U) :
∃ (f : M → 𝒫 M), Injective f := by
use fun x ↦ ⟨ _, singleton_mem_powerset x.prop ⟩
intro a b hab
simp at hab
rw [Subtype.val_inj] at hab
assumption
instance {U : Type _} {M : Set U} : Membership ↑M ↑(𝒫 M) :=
{ mem := fun x A ↦ x.1 ∈ A.1 }
instance {U : Type _} {M : Set U} : Membership U (Set ↑M) :=
{ mem := fun x A ↦ _ }
example
{U : Type _} {M : Set U} (h_empty : M.Nonempty)
(f : {x : U // x ∈ M} → {A : Set U // A ∈ 𝒫 M}):
¬ Surjective f := by
unfold Surjective
push_neg
--by_contra h_sur
let B : Set M := {x : M | x ∉ (f x)}
use ⟨B, sorry⟩
intro ⟨a, ha⟩
sorry
-- Too hard?
#check singleton_mem_powerset
#check Subtype.val_inj
-- These are fun exercises for prime.
example (x : ) : 0 < x ↔ 1 ≤ x := by
rfl
lemma le_cancel_left (n x : ) (h : x ≠ 0): n ≤ n * x := by
induction n
simp
simp
rw [← zero_lt_iff] at h
assumption
example (n m : ) (g : m ≠ 0) (h : n m) : n ≤ m := by
rcases h with ⟨x, hx⟩
rw [hx]
apply le_cancel_left
by_contra k
rw [k] at hx
simp at hx
rw [hx] at g
contradiction