You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
lean4game/server/adam/Adam/LemmaDocs.lean

515 lines
13 KiB
Plaintext

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import GameServer.Commands
-- Wird im Level "Implication 11" ohne Beweis angenommen.
LemmaDoc not_not as "not_not" in "Logic"
"
`not_not {A : Prop} : ¬¬A ↔ A`
## Eigenschaften
* `simp`-Lemma: Ja
* Namespace: `Classical`
* Minimal Import: `Std.Logic`
* Mathlib Doc: [#not_not](https://leanprover-community.github.io/mathlib4_docs/Std/Logic.html#Classical.not_not)
"
-- Wird im Level "Implication 10" ohne Beweis angenommen.
LemmaDoc not_or_of_imp as "not_or_of_imp" in "Logic"
"
`not_or_of_imp {A B : Prop} : (A → B) → ¬A B`
## Eigenschaften
* `simp`-Lemma: Nein
* Namespace: `-`
* Minimal Import: `Mathlib.Logic.Basic`
* Mathlib Doc: [#not_or_of_imp](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Logic/Basic.html#not_or_of_imp)
"
-- Wird im Level "Implication 12" bewiesen.
LemmaDoc imp_iff_not_or as "imp_iff_not_or" in "Logic"
"
`imp_iff_not_or {A B : Prop} : (A → B) ↔ (¬A B)`
## Eigenschaften
* `simp`-Lemma: Nein
* Namespace: `-`
* Minimal Import: `Mathlib.Logic.Basic`
* Mathlib Doc: [#imp_iff_not_or](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Logic/Basic.html#imp_iff_not_or)
"
LemmaDoc Nat.succ_pos as "succ_pos" in "Nat"
"
`Nat.succ_pos (n : ) : 0 < n.succ`
$n + 1$ ist strikt grösser als Null.
## Eigenschaften
* `simp` Lemma: Nein
* Namespace: `Nat`
* Minimal Import: `Mathlib.Init.Prelude`
* Mathlib Doc: [#Nat.succ_pos](https://leanprover-community.github.io/mathlib4_docs/Init/Prelude.html#Nat.succ_pos)
"
LemmaDoc Nat.pos_iff_ne_zero as "pos_iff_ne_zero" in "Nat"
"
`Nat.pos_iff_ne_zero {n : } : 0 < n ↔ n ≠ 0`
## Eigenschaften
* `simp`-Lemma: Nein
* Namespace: `Nat`
* Minimal Import: `Std.Data.Nat.Lemmas`
* Mathlib Doc: [#Nat.pos_iff_ne_zero](https://leanprover-community.github.io/mathlib4_docs/Std/Data/Nat/Lemmas.html#Nat.pos_iff_ne_zero)
"
-- TODO: Not minimal description
LemmaDoc zero_add as "zero_add" in "Addition"
"
`zero_add (a : ) : 0 + a = a`
## Eigenschaften
* `simp`-Lemma: Ja
* Namespace: `-`
* Import: `Mathlib.Nat.Basic`
* Mathlib Doc: [#zero_add](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/Group/Defs.html#zero_add)
"
LemmaDoc add_zero as "add_zero" in "Addition"
"
This lemma says `∀ a : , a + 0 = a`.
## Eigenschaften
* Mathlib Doc"
LemmaDoc add_succ as "add_succ" in "Addition"
"This lemma says `∀ a b : , a + succ b = succ (a + b)`.
## Eigenschaften
* Mathlib Doc: [#]()"
LemmaDoc not_forall as "not_forall" in "Logic"
"
`not_forall {α : Sort _} {P : α → Prop} : ¬(∀ x, → P x) ↔ ∃ x, ¬P x`
## Eigenschaften
* `simp`-Lemma: Ja
* Namespace: `-`
* Minimal Import: `Mathlib.Logic.Basic`
* Mathlib Doc: [#not_forall](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Logic/Basic.html#not_forall)
"
LemmaDoc not_exists as "not_exists" in "Logic"
"
`not_exists {α : Sort _} {P : α → Prop} : (¬∃ x, P x) ↔ ∀ (x : α), ¬P x.
## Eigenschaften
* `simp`-Lemma: Ja
* Namespace: `-`
* Minimal Import: `Std.Logic`
* Mathlib Doc: [#not_exists](https://leanprover-community.github.io/mathlib4_docs/Std/Logic.html#not_exists)"
LemmaDoc Nat.even_iff_not_odd as "even_iff_not_odd" in "Nat"
"
`even_iff_not_odd {n : } : Even n ↔ ¬Odd n`
## Eigenschaften
* `simp`-Lemma: Nein
* Namespace: `Nat`
* Minimal Import: `Mathlib.Data.Nat.Parity`
* Mathlib Doc: [#Nat.even_iff_not_odd](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Nat/Parity.html#Nat.even_iff_not_odd)"
LemmaDoc Nat.odd_iff_not_even as "odd_iff_not_even" in "Nat"
"
`Nat.odd_iff_not_even {n : } : Odd n ↔ ¬Even n`
## Eigenschaften
* `simp`-Lemma: Ja
* Namespace: `Nat`
* Minimal Import: `Mathlib.Data.Nat.Parity`
* Mathlib Doc: [#Nat.odd_iff_not_even](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Nat/Parity.html#Nat.odd_iff_not_even)"
LemmaDoc even_square as "even_square" in "Nat"
"
`even_square : (n : ), Even n → Even (n ^ 2)`
## Eigenschaften
* `simp`-Lemma: Nein
* *Nicht in Mathlib*
"
LemmaDoc Set.mem_univ as "mem_univ" in "Set"
"
`Set.mem_univ {α : Type _} (x : α) : x ∈ @univ α`
Jedes Element ist in `univ`, der Menge aller Elemente eines Typs `α`.
## Eigenschaften
* `simp`-Lemma: Ja
* Namespace: `Set`
* Minimal Import: `Mathlib.Data.Set.Basic`
* Mathlib Doc: [#mem_univ](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Set/Basic.html#Set.mem_univ)
"
LemmaDoc not_mem_empty as "not_mem_empty" in "Set"
"
`Set.not_mem_empty {α : Type _} (x : α) : x ∉ ∅`
Kein Element ist in der leeren Menge.
## Eigenschaften
* `simp`-Lemma: Nein
* Namespace: `Set`
* Minimal Import: `Mathlib.Data.Set.Basic`
* Mathlib Doc: [#not_mem_empty](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Set/Basic.html#Set.not_mem_empty)
"
LemmaDoc empty_subset as "empty_subset" in "Set"
"
`Set.empty_subset {α : Type u} (s : Set α) : ∅ ⊆ s`
## Eigenschaften
* `simp`-Lemma: Ja
* Namespace: `Set`
* Minimal Import: `Mathlib.Data.Set.Basic`
* Mathlib Doc: [#empty_subset](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Set/Basic.html#Set.empty_subset)
"
LemmaDoc Subset.antisymm as "Subset.antisymm" in "Set"
"
`Set.Subset.antisymm {α : Type u} {a : Set α} {b : Set α} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b`
Zwei Mengen sind identisch, wenn sowohl $A \\subseteq B$ wie auch $B \\subseteq A$.
## Details
`apply Subset.antisymm` ist eine Möglichkeit Gleichungen von Mengen zu zeigen.
eine andere ist `ext i`, welches Elementweise funktiniert.
Siehe auch
[`#Subset.antisymm_iff`](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Set/Basic.html#Set.Subset.antisymm_iff)
für die Iff-Version.
## Eigenschaften
* `simp`-Lemma: Nein
* Namespace: `Set.Subset`
* Minimal Import: `Mathlib.Data.Set.Basic`
* Mathlib Doc: [#Subset.antisymm](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Set/Basic.html#Set.Subset.antisymm)
"
LemmaDoc Subset.antisymm_iff as "Subset.antisymm_iff" in "Set"
"
`Set.Subset.antisymm_iff {α : Type u} {a : Set α} {b : Set α} : a = b ↔ a ⊆ b ∧ b ⊆ a`
Zwei Mengen sind identisch, wenn sowohl $A \\subseteq B$ wie auch $B \\subseteq A$.
## Details
`rw [Subset.antisymm_iff]` ist eine Möglichkeit Gleichungen von Mengen zu zeigen.
eine andere ist `ext i`, welches Elementweise funktiniert.
Siehe auch
[`#Subset.antisymm`](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Set/Basic.html#Set.Subset.antisymm)
für eine verwandte Version.
## Eigenschaften
* `simp`-Lemma: Nein
* Namespace: `Set.Subset`
* Minimal Import: `Mathlib.Data.Set.Basic`
* Mathlib Doc: [#Subset.antisymm_iff](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Set/Basic.html#Set.Subset.antisymm_iff)
"
LemmaDoc Nat.prime_def_lt'' as "prime_def_lt''" in "Nat"
"
`Nat.prime_def_lt'' {p : } :
Nat.Prime p ↔ 2 ≤ p ∧ ∀ (m : ), m p → m = 1 m = p`
Die bekannte Definition einer Primmzahl in ``: Eine Zahl (`p ≥ 2`) mit genau zwei Teilern.
## Eigenschaften
* `simp`-Lemma: Nein
* Namespace: `Nat`
* Mathlib Doc: [#Nat.prime_def_lt''](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Nat/Prime.html#Nat.prime_def_lt'')
"
LemmaDoc Finset.sum_add_distrib as "sum_add_distrib" in "Sum"
"
## Eigenschaften
* `simp`-Lemma: Nein
* Namespace: `Finset`
* Mathlib Doc: [#Finset.sum_add_distrib](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/BigOperators/Basic.html#Finset.sum_add_distrib)
"
LemmaDoc Fin.sum_univ_castSucc as "sum_univ_castSucc" in "Sum"
"
## Eigenschaften
* `simp`-Lemma: Nein
* Namespace: `Fin`
* Mathlib Doc: [#sum_univ_castSucc](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/BigOperators/Fin.html#Fin.sum_univ_castSucc)
"
LemmaDoc Nat.succ_eq_add_one as "succ_eq_add_one" in "Sum"
"
## Eigenschaften
* `simp`-Lemma: Nein
* Namespace: `Nat`
* Mathlib Doc: [#succ_eq_add_one](https://leanprover-community.github.io/mathlib4_docs/Init/Data/Nat/Basic.html#Nat.succ_eq_add_one)
"
LemmaDoc Nat.zero_eq as "zero_eq" in "Sum"
"
## Eigenschaften
* Mathlib Doc: [#zero_eq](https://leanprover-community.github.io/mathlib4_docs/Init/Data/Nat/Basic.html#Nat.zero_eq)
"
LemmaDoc add_comm as "add_comm" in "Nat"
"
## Eigenschaften
* Mathlib Doc: [#add_comm](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/Group/Defs.html#add_comm)
"
LemmaDoc mul_add as "mul_add" in "Nat"
"
## Eigenschaften
* Mathlib Doc: [#mul_add](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/Ring/Defs.html#mul_add)
"
LemmaDoc add_mul as "add_mul" in "Nat"
"
## Eigenschaften
* Mathlib Doc: [#add_mul](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/Ring/Defs.html#add_mul)
"
LemmaDoc arithmetic_sum as "arithmetic_sum" in "Sum"
"
## Eigenschaften
* Not a mathlib lemma.
"
LemmaDoc add_pow_two as "add_pow_two" in "Nat"
"
## Eigenschaften
* Mathlib Doc: [#add_pow_two](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/GroupPower/Ring.html#add_pow_two)
"
LemmaDoc Finset.sum_comm as "Finset.sum_comm" in "Sum"
"
## Eigenschaften
* Mathlib Doc: [#sum_comm](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/BigOperators/Basic.html#Finset.sum_comm)
"
LemmaDoc Function.comp_apply as "Function.comp_apply" in "Function"
"
## Eigenschaften
* Mathlib Doc: [#comp_apply](https://leanprover-community.github.io/mathlib4_docs/Init/Core.html#Function.comp_apply)
"
LemmaDoc not_le as "not_le" in "Logic"
"
## Eigenschaften
* Mathlib Doc: [#not_le](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Init/Algebra/Order.html#not_le)
"
LemmaDoc if_pos as "if_pos" in "Logic"
"
## Eigenschaften
* Mathlib Doc: [#if_pos](https://leanprover-community.github.io/mathlib4_docs/Init/Core.html#if_pos)
"
LemmaDoc if_neg as "if_neg" in "Logic"
"
## Eigenschaften
* Mathlib Doc: [#if_neg](https://leanprover-community.github.io/mathlib4_docs/Init/Core.html#if_neg)
"
LemmaDoc StrictMono.injective as "StrictMono.injective" in "Function"
"
## Eigenschaften
* Mathlib Doc: [#StrictMono.injective](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Order/Monotone/Basic.html#StrictMono.injective)
"
LemmaDoc StrictMono.add as "StrictMono.add" in "Function"
"
## Eigenschaften
* Mathlib Doc: [#StrictMono.add](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/Order/Monoid/Lemmas.html#StrictMono.add)
"
LemmaDoc Odd.strictMono_pow as "Odd.strictMono_pow" in "Function"
"
## Eigenschaften
* Mathlib Doc: [#Odd.strictMono_pow](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/Parity.html#Odd.strictMono_pow)
"
LemmaDoc Exists.choose as "Exists.choose" in "Function"
"
## Eigenschaften
* Mathlib Doc: [#Exists.choose](https://leanprover-community.github.io/mathlib4_docs/Std/Logic.html#Exists.choose)
"
LemmaDoc Exists.choose_spec as "Exists.choose_spec" in "Function"
"
## Eigenschaften
* Mathlib Doc: [#Exists.choose_spec](https://leanprover-community.github.io/mathlib4_docs/Std/Logic.html#Exists.choose_spec)
"
LemmaDoc congrArg as "congrArg" in "Function"
"
## Eigenschaften
* Mathlib Doc: [#congrArg](https://leanprover-community.github.io/mathlib4_docs/Init/Prelude.html#congrArg)
"
LemmaDoc congrFun as "congrFun" in "Function"
"
## Eigenschaften
* Mathlib Doc: [#congrFun](https://leanprover-community.github.io/mathlib4_docs/Init/Prelude.html#congrFun)
"
LemmaDoc Iff.symm as "Iff.symm" in "Logic"
"
## Eigenschaften
* Mathlib Doc: [#Iff.symm](https://leanprover-community.github.io/mathlib4_docs/Init/Core.html#Iff.symm)
"
/-! ## Definitions -/
DefinitionDoc Even as "Even"
"
`even n` ist definiert als `∃ r, a = 2 * r`.
Die Definition kann man mit `unfold even at *` einsetzen.
## Eigenschaften
* Mathlib Doc: [#Even](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/Parity.html#Even)"
DefinitionDoc Odd as "Odd"
"
`odd n` ist definiert als `∃ r, a = 2 * r + 1`.
Die Definition kann man mit `unfold odd at *` einsetzen.
* Mathlib Doc: [Odd](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/Parity.html#Odd)"
DefinitionDoc Injective as "Injective"
"
`Injective f` ist definiert als
```
∀ a b, f a = f b → a = b
```
definiert.
* Mathlib Doc: [Injective](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Init/Function.html#Function.Injective)"
DefinitionDoc Surjective as "Surjective"
"
`Surjective f` ist definiert als
```
∀ a, (∃ b, f a = b)
```
* Mathlib Doc: [Surjective](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Init/Function.html#Function.Surjective)"
DefinitionDoc Bijective as "Bijective"
"
## Eigenschaften
* Mathlib Doc: [#Bijective](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Init/Function.html#Function.Bijective)
"
DefinitionDoc LeftInverse as "LeftInverse"
"
## Eigenschaften
* Mathlib Doc: [#LeftInverse](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Init/Function.html#Function.LeftInverse)
"
DefinitionDoc RightInverse as "RightInverse"
"
## Eigenschaften
* Mathlib Doc: [#RightInverse](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Init/Logic.html#RightInverse)
"
DefinitionDoc StrictMono as "StrictMono"
"
`StrictMono f` ist definiert als
```
∀ a b, a < b → f a < f b
```
## Eigenschaften
* Mathlib Doc: [#StrictMono](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Order/Monotone/Basic.html#StrictMono)
"
DefinitionDoc Symbol.Subset as "⊆" "
Auf Mengen (`Set`) ist `A ⊆ B` als `∀x, x ∈ A → x ∈ B` implementiert.
"