This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.
import TestGame.Metadata
import Mathlib
Game "TestGame"
World "Logic"
Level 6
Title "Rewrite"
Introduction
"
Mit `rw` kann man nicht nur das Goal sondern auch andere Annahmen umschreiben:
Wenn `(h : X = Y)` ist, dann ersetzt `rw [h] at g` in der Annahme
`g` das `X` durch `Y`.
"
Statement umschreiben
"Angenommen man hat die Gleichheiten
$$
\\begin{aligned} a &= b \\\\ a + a ^ 2 &= b + 1 \\end{aligned}
$$
Zeige dass $b + b ^ 2 = b + 1$."
(a b : ℕ) (h : a = b) (g : a + a ^ 2 = b + 1) : b + b ^ 2 = b + 1 := by
rw [h] at g
assumption
Message (a : ℕ) (b : ℕ) (h : a = b) (g : a + a ^ 2 = b + 1) : b + b ^ 2 = b + 1 =>
"`rw [ ... ] at g` schreibt die Annahme `g` um."
Message (a : ℕ) (b : ℕ) (h : a = b) (g : a + a ^ 2 = b + 1) : a + a ^ 2 = a + 1 =>
"Sackgasse. probiers doch mit `rw [h] at g` stattdessen."
Conclusion "Übrigens, mit `rw [h] at *` kann man im weiteren `h` in **allen** Annahmen und