You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
lean4game/server/testgame/TestGame/StructInstWithHolesTest.lean

118 lines
3.1 KiB
Plaintext

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import TestGame.StructInstWithHoles
import Mathlib
example : Module := by
refine { ?..! }
exact fun a r => a * r
intro b
sorry
sorry
sorry
sorry
sorry
sorry
sorry
structure Foo where
x : Nat := 0
y : Nat
structure Bar extends Foo where
z : Nat := x
example := by refine { ?.. : Foo }; case y => exact 0
example := by refine { ?.. : Bar }; case y => exact 0
example := by refine { ?..a : Bar }; case a.y => exact 0
example := by refine { ?..! : Bar }; case x | y | z => exact 0;
example := by refine { ?..!a : Bar }; case a.x | a.y | a.z => exact 0;
-- example := by refine' { ... : Bar }; exact 0
example := by refine' { .. : Bar }; exact 0; exact 0; exact 0
-- example := by refine' { ..! : Bar }; exact 0; exact 0; exact 0
structure rflFoo where
x : Nat
y : Nat
xy : x = y := by rfl
example := by refine { ?.. : rflFoo }; (case x | y => exact 0); case xy => rfl
example := by refine { ?..! : rflFoo }; (case x | y => exact 0); case xy => rfl
structure autoFoo where
x : Nat := 0
y : Nat := 0
xy : x = y := by rfl
example := { ?.. : autoFoo }
example := by refine { ?..! : autoFoo }; (case x | y => exact 0); case xy => rfl
def f : Foo → Nat := fun _ => 0
def ff : Foo → Foo → Unit := fun _ _ => ()
def ffb : Foo → Bar → Unit := fun _ _ => ()
def ffa : Foo → autoFoo → Unit := fun _ _ => ()
example := by refine { x := f { ?.. }, ?.. : Foo }; case y | y_1 => exact 0
example := by refine { x := f { ?..x }, ?.. : Foo }; case x.y | y => exact 0
example := by refine { x := f { ?.. }, ?..x : Foo }; case y | x.y => exact 0
example := by refine { x := f { ?..x }, ?..x : Foo }; case x.y | x.y_1 => exact 0
example := by refine ff { ?.. } { ?.. }; case y | y_1 => exact 0
example := by refine ff { ?..! } { ?.. }; case x | y | y_1 => exact 0
example := by refine ffb { ?..! } { ?..! }; case x | y | x_1 | y_1 | z_1 => exact 0
example := by refine ffa { ?..! } { ?..! }; (case x | y | x_1 | y_1 => exact 0); rfl
structure Foo' where
x : Nat
structure dFoo' where
x : Nat := 0
def ff' : Foo → Foo' → Unit := fun _ _ => ()
def fdf' : Foo → dFoo' → Unit := fun _ _ => ()
example := by refine ff' { ?.. } { ?.. }; case y | x_1 => exact 0
example := by refine fdf' { ?.. } { ?.. }; case y => exact 0
structure Fooα (α : Type) where
x : α
example := by refine { ?.. : Fooα Nat}; case x => exact 0
structure Fooαi where
{α : Type}
x : α
example := by refine { ?.. : Fooαi }; (case α => exact Nat); case x => exact 0
/- haveFieldProj tests (subject to be moved)-/
section haveFieldProj
structure Foo'' where
x : Bool
y : Nat
def foo'': Foo'' := { x := true, y := 0 }
example := by
refine { ?.. : Foo''};
haveFieldProj;
case x => exact x.proj foo'';
case y => exact 0
example := by
refine { ?.. : Foo''};
haveFieldProj as a;
case x => exact a foo'';
case y => exact 0
example := by
refine { ?.. : Foo''};
haveFieldProj y;
case x => exact 0 == y.proj foo'';
case y => exact 0
example := by
refine { ?.. : Foo''};
haveFieldProj y as a;
case x => exact 0 == a foo'';
case y => exact 0
end haveFieldProj