This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.
import TestGame.Metadata
import Mathlib
import Mathlib.Algebra.Parity
import Mathlib.Tactic.Ring
Game "TestGame"
World "SetTheory2"
Level 3
Title ""
Introduction
"
Um anzunehmen, dass zwei Mengen disjunkt sind schreibt man
`Disjoint S T`, welches dadurch definiert ist das die
einzige gemeinsame Teilmenge die leere Menge ist,
also etwa `A ⊆ S → A ⊆ T → A ⊆ ∅`.
Beachte, dass `Disjoint` in Lean genereller definiert ist als
für Mengen, deshalb siehst du die Symbole
`≤` anstatt `⊆` und `⊥` anstatt `∅`, aber diese bedeuten genau
das gleiche.
"
open Set
Statement
"" :
¬Disjoint ({n : ℤ | ∃ k, n = 2 * k} : Set ℤ) ({3, 5, 6, 9, 11} : Set ℤ) := by