You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

181 lines
4.2 KiB
Matlab

/*
This Magma code example is from Davide Lombardo's page:
https://people.dm.unipi.it/lombardo/files/Lab.m
*/
/******
Elementary approach to enumerating groups of order 2^n, n \leq 6
*******/
/*
Compute the Cayley embedding of a finite group G
*/
function CayleyEmbedding(G)
// Get the order of the group
n := #G;
// Define the symmetric group on n elements
S := SymmetricGroup(n);
// Get the elements of G
elements := [g : g in G];
// Create a map from G to S_n
CayleyMap := hom<G -> S | g :-> S![Index(elements, g * elements[i]) : i in [1..n]]>;
return Image(CayleyMap), CayleyMap;
end function;
/*
Construct the "double" of a permutation sigma
*/
function DoublePermutation(sigma)
n := Degree(Parent(sigma));
S2n := Sym(2*n);
L := [i^sigma : i in [1..n]] cat [i^sigma + n : i in [1..n]];
return S2n!L;
end function;
/*
Construct the "double" of a group G
*/
function DoubleGroup(G)
H := CayleyEmbedding(G);
n := #H;
HDouble := sub< Sym(2*n) | [ DoublePermutation(h) : h in Generators(H) ] >;
return HDouble;
end function;
/*
Given a group G, construct a list of groups H
such that G < H with index 2, and up to isomorphism,
every group H with this property appears in the list.
The first version is elementary; the second uses the
correspondence theorem for subgroups; and the third
one optimises by not repeating subgroups that are
obviously conjugate to one another and only considering
a 2-Sylow subgroup of the normaliser.
*/
function ConstructDoubleCovers(G)
GDouble := DoubleGroup(G);
N := Normaliser( Sym(2*#G), GDouble );
subs := Subgroups(N : OrderEqual := 2*#G );
subs := [sub`subgroup : sub in subs];
subs := [H : H in subs | GDouble subset H ];
return subs;
end function;
function ConstructDoubleCovers2(G)
GDouble := DoubleGroup(G);
N := Normaliser( Sym(2*#G), GDouble );
Quoziente, Proiezione := N/GDouble;
Sezione := Proiezione^(-1);
Els2 := [q : q in Quoziente | Order(q) eq 2];
subs := [ sub< N | GDouble, Sezione(q) > : q in Els2 ];
return subs;
end function;
function ConstructDoubleCovers3(G)
"Computing double";
time GDouble := DoubleGroup(G);
"Computing normaliser";
time N := Normaliser( Sym(2*#G), GDouble );
"Computing Sylow subgroup";
Sylow2 := SylowSubgroup(N, 2);
"Computing quotient";
"Order of quotient:", #Sylow2 / #GDouble;
time Quoziente, Proiezione := Sylow2/GDouble;
"Computing section";
time Sezione := Proiezione^(-1);
"Computing elements of order 2 in the quotient";
time Els2 := Subgroups(Quoziente : OrderEqual := 2);
"Computing subgroups";
time subs := [ sub< N | GDouble, Sezione(q`subgroup) > : q in Els2 ];
return subs;
end function;
/*
Given a list L of groups, returns a list L' that contains
every isomorphism class of groups in L precisely once
*/
function FilterDuplicates(list)
CleanList := [];
for H in list do
test := true;
for H2 in CleanList do
if test then
test := test and not IsIsomorphic(H, H2);
end if;
end for;
if test then
CleanList := CleanList cat [H];
end if;
end for;
return CleanList;
end function;
function FilterDuplicatesFast(list)
CleanList := [];
CleanNames := [];
for H in list do
if not GroupName(H) in CleanNames then
CleanList := CleanList cat [H];
CleanNames := CleanNames cat [GroupName(H)];
end if;
end for;
return CleanList;
end function;
/*
Given a list L of groups [G_i], returns a list L' = [H_j]
where each H_j contains some G_i with index 2, every
group with this property appears in L', and L' contains no
duplicates up to isomorphism.
*/
function DoubleListSlow(L)
LNew := [];
for G in L do
dc := ConstructDoubleCovers(G);
dc := FilterDuplicates(dc);
LNew := LNew cat dc;
end for;
return FilterDuplicates(LNew);
end function;
function DoubleList(L)
LNew := [];
for G in L do
time dc := ConstructDoubleCovers3(G);
time dc := FilterDuplicatesFast(dc);
LNew := LNew cat dc;
end for;
return FilterDuplicatesFast(LNew);
end function;
list2 := [CyclicGroup(2)];
time list4 := DoubleList(list2);
time list8 := DoubleList(list4);
time list16 := DoubleList(list8);
time list32 := DoubleList(list16);
time list64 := DoubleList(list32);
assert #list32 eq NumberOfSmallGroups(32);
assert #list64 eq NumberOfSmallGroups(64);