You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2660 lines
599 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 23,
"id": "5a8f46e4-e7a3-4014-ba70-6a9cf844c87c",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import tensorflow as tf\n",
"from tensorflow import keras\n",
"from sklearn.metrics import mean_squared_error, mean_absolute_error"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "b2b3a27f-daaa-4a78-8cfd-3d16a3cb1754",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAHFCAYAAAA64xk9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAze0lEQVR4nO3de1hVVeL/8c/hdlDTU0qgKILNlJKXqTAV1NG0SNPpW1OTZmGlVkSWl26S00ROhVn52E0zK51GK7+NWlY+FJWa5S0vVJN87WaBCaGWB8sChfX7o8fz68gBAdnAgvfrefaTZ+219l5nafJxrbXPcRljjAAAACwR1NAdAAAAqAnCCwAAsArhBQAAWIXwAgAArEJ4AQAAViG8AAAAqxBeAACAVQgvAADAKoQXAABgFcIL0MA++eQTjR8/Xn/4wx/UokULtWjRQqeffrpuvPFGbdmyxa9uRkaGXC5Xg/Tz0KFDysjI0Jo1a6pV/5tvvpHL5dKiRYtqdb+4uDhde+21vtd79uxRRkaGcnJyKtQ9kXEJ1Hbw4MEaPHhwra5XHQ8++KBeffXVCuVr1qyRy+Wq9hgDzVVIQ3cAaM7mz5+viRMnqmvXrpo0aZK6d+8ul8ul3NxcvfTSSzr33HP15Zdf6g9/+ENDd1WHDh3SfffdJ0nV+sHeoUMHbdiwodZ9X7Fihdq0aeN7vWfPHt13332Ki4vTWWed5Vd3woQJGjZsWK3uE8jcuXPr7FqBPPjgg7r88st1ySWX+JWfc8452rBhg84880xH7w/YjvACNJAPP/xQaWlpGjFihP7zn/8oLCzMd27IkCG6+eab9corr6hFixaO9eHQoUNq2bKlI9d2u93q169frdufffbZ1a7bqVMnderUqdb3OlZDhYc2bdqc0JgBzQXLRkADefDBBxUcHKz58+f7BZff+9vf/qbo6Ogqr1NeXq5Zs2apW7ducrvdioyM1NixY7V7926/eoMHD1aPHj30/vvvKykpSS1bttS4ceMkSXl5ebr66qsVGRkpt9ut+Ph4PfrooyovL5f02xLQqaeeKkm677775HK55HK5/JZ1jhVo2ejoEs1nn32mK6+8Uh6PR1FRURo3bpy8Xq9f+98vG61Zs0bnnnuuJOm6667z3T8jI8Pvur+3dOlSJScnq0OHDmrRooXi4+M1bdo0/fzzz1WO59Gx+v3s0rXXXuu757HH0T78+uuvuu2223TWWWfJ4/Gobdu2SkxM1GuvveZ3bZfLpZ9//ln/+te/fNc4eq/Klo1WrlypxMREtWzZUq1bt9YFF1ygDRs2+NWpydgCtmPmBWgAZWVlWr16tXr37q0OHTqc0LVuuukmPfPMM5o4caJGjhypb775Rvfcc4/WrFmjbdu2KSIiwle3oKBAV199te688049+OCDCgoK0t69e5WUlKTS0lL985//VFxcnN544w3dfvvt+uqrrzR37lx16NBBWVlZGjZsmMaPH68JEyZIki/Q1NRll12mUaNGafz48fr000+Vnp4uSXr++ecD1j/nnHO0cOFCXXfddfr73/+uESNGSFKVsy1ffPGFLrroIk2ePFmtWrXS//3f/+mhhx7S5s2b9d5779Wov/fcc49SU1P9yp566iktXrzYN0tTUlKiH374Qbfffrs6duyo0tJSvfPOO/rrX/+qhQsXauzYsZKkDRs2aMiQITrvvPN0zz33SJLf8tixXnzxRV111VVKTk7WSy+9pJKSEs2aNUuDBw/Wu+++qwEDBvjVr+nYAlYyAOpdYWGhkWRGjx5d4dyRI0fM4cOHfUd5ebnv3L333mt+/79tbm6ukWTS0tL8rrFp0yYjydx9992+skGDBhlJ5t133/WrO23aNCPJbNq0ya/8pptuMi6Xy+zcudMYY8zevXuNJHPvvfdW6z3u2rXLSDILFy6s0P9Zs2b51U1LSzPh4eF+7zU2NtZcc801vtcfffRRhesde93KlJeXm8OHD5u1a9caSebjjz+usu2gQYPMoEGDKr3e//7v/xqXy+U3vsc6+vs4fvx4c/bZZ/uda9Wqld97O2r16tVGklm9erUxxpiysjITHR1tevbsacrKynz1Dh48aCIjI01SUlKF91GdsQVsx7IR0MgkJCQoNDTUdzz66KOV1l29erUkVVi+6dOnj+Lj4/Xuu+/6lZ9yyikaMmSIX9l7772nM888U3369PErv/baa2WMqfEsRXVcfPHFfq979eqlX3/9VUVFRXV2j6+//lpjxoxR+/btFRwcrNDQUA0aNEiSlJubW+vrrl27VikpKbr66qv1wAMP+J175ZVX1L9/f5100kkKCQlRaGionnvuuVrfb+fOndqzZ49SUlIUFPT//7o+6aSTdNlll2njxo06dOiQX5v6GFugoRFegAYQERGhFi1a6Ntvv61w7sUXX9RHH32klStXHvc6+/fvl6SAS0/R0dG+80cFqrd///5K2//+HnWpXbt2fq/dbrck6ZdffqmT6//0008aOHCgNm3apPvvv19r1qzRRx99pOXLl5/QfT777DNdcsklGjhwoJ577jm/c8uXL9cVV1yhjh07avHixdqwYYM++ugjjRs3Tr/++mut7ne839/y8nL9+OOPfuVOjy3QGLDnBWgAwcHBGjJkiN5++20VFBT4/XA6uofim2++Oe51jv6gKigoqLD/Y8+ePX77XSQF/CyUdu3aqaCgoEL5nj17JKnCNWzw3nvvac+ePVqzZo1vtkWSDhw4UOtr7t69W8OGDVPnzp21bNkyhYaG+p1fvHixunTpoqVLl/qNc0lJSa3v+fvf32Pt2bNHQUFBOuWUU2p9fcBWzLwADSQ9PV1lZWVKTU3V4cOHa3WNo0tAixcv9iv/6KOPlJubq6FDhx73GkOHDtWOHTu0bds2v/IXXnhBLpdL5513nqSG/xd8Te5/NDwcbXPU/Pnza3Vvr9er4cOHy+VyadWqVQE32LpcLoWFhfkFl8LCwgpPGx3tV3XeR9euXdWxY0e9+OKLMsb4yn/++WctW7bM9wQS0Nww8wI0kP79++upp57SLbfconPOOUc33HCDunfvrqCgIBUUFGjZsmWSqn4SpWvXrrrhhhv0xBNPKCgoSMOHD/c9bRQTE6MpU6Yctx9TpkzRCy+8oBEjRmjGjBmKjY3Vm2++qblz5+qmm27SGWecIUlq3bq1YmNj9dprr2no0KFq27atIiIiFBcXVyfjcTxHP4F4yZIlio+P10knnaTo6OiAj5InJSXplFNOUWpqqu69916FhoZqyZIl+vjjj2t17zFjxmjHjh165plnlJ+fr/z8fN+5o58xM3LkSC1fvlxpaWm6/PLLlZ+fr3/+85/q0KGDvvjiC7/r9ezZU2vWrNHrr7+uDh06qHXr1uratWuF+wYFBWnWrFm66qqrNHLkSN14440qKSnRww8/rAMHDmjmzJm1ej+A9Rp6xzDQ3OXk5JjrrrvOdOnSxbjdbhMeHm7++Mc/mrFjx1Z4MijQkzFlZWXmoYceMmeccYYJDQ01ERER5uqrrzb5+fl+9QYNGmS6d+8esA/ffvutGTNmjGnXrp0JDQ01Xbt2NQ8//LDfEy7GGPPOO++Ys88+27jdbiMp4BMzR1X1tNHevXv96i5cuNBIMrt27fKVHfu0kTHGvPTSS6Zbt24mNDTU78mnQOOyfv16k5iYaFq2bGlOPfVUM2HCBLNt27ZK+3TsWP3+aaPY2FgjKeDx+6evZs6caeLi4ozb7Tbx8fFmwYIFAa+fk5Nj+vfvb1q2bGkk+e517NNGR7366qumb9++Jjw83LRq1coMHTrUfPjhh351ajK2gO1cxvxuLhIAAKCRY88LAACwCuEFAABYhfACAACsQngBAABWIbwAAACrEF4AAIBV6uVD6ubOnauHH35YBQUF6t69u+bMmaOBAwdWWn/JkiWaNWuWvvjiC3k8Hg0bNkyPPPJIhe/sCKS8vFx79uxR69atA34UOgAAaHyMMTp48KCio6P9voi0ssqOevnll01oaKhZsGCB2bFjh5k0aZJp1aqV+fbbbwPWX7dunQkKCjKPPfaY+frrr826detM9+7dzSW
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#Glorot initialization: range of values for the weights as a function of n\n",
"values=[i for i in range(1,101)]\n",
"m=10 #number of output units\n",
"results_glorot=[np.sqrt(6/(i+m)) for i in values]\n",
"plt.errorbar(values,[0.0 for _ in values], yerr=results_glorot)\n",
"plt.title(\"Glorot initialization\")\n",
"plt.xlabel(\"n\") # number of input units\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "3b757f89-ced1-476e-97c8-1d46a4bdf255",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAHFCAYAAADPHZKNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgt0lEQVR4nO3de5BU5Z344W/DMM1FmIgjl5HhZiyVRbyAJlEjo2aNBtzKXqyYjQGMxKBCUHYTRV25VHRI4lrJGiXiGnDXZLVSQddVKwlJgGhpFBASTFwTVhDCwLLKhsFLBmHO748t+uc4QIZhet7pmeep6ir69Ol+33mLYj6cc7o7l2VZFgAACXRLPQEAoOsSIgBAMkIEAEhGiAAAyQgRACAZIQIAJCNEAIBkhAgAkIwQAQCSESKQ0JIlSyKXy8Xq1asP+PjEiRNj+PDhbT7epk2bDvu5mzZtilwuF0uWLClse/bZZ2Pu3Lnxhz/8odn+NTU1UVNT06p5Hui5uVwu5s6d26rX+1Pq6upi7ty5sW7dumaPzZ07N3K5XFHGBSLKUk8AaD8TJkyI5557LgYPHnzYzx08eHA899xzcfzxxxe2PfvsszFv3ryYMmVKfOADH2iy/7333nuk023iueeeiyFDhrTpa+5XV1cX8+bNi+HDh8dpp53W5LGpU6fGxRdfXJRxASECXcqxxx4bxx57bKuem8/n48Mf/nCL9x81alSrxjmYwxm7LQ0ZMqRoAQQ4NQMlJ8uyuPfee+O0006LXr16xdFHHx1/8zd/E6+++uqffO6BTs3U1NTE6NGjY9WqVfHRj340evfuHSNHjowFCxZEY2NjYb/3n5qZO3dufOlLX4qIiBEjRkQul4tcLhcrVqwovO77T6/MmzcvPvShD0X//v2jX79+ccYZZ8QDDzwQLfnuzfefmhk+fHhhzPff9s9hw4YNceWVV8YJJ5wQvXv3juOOOy4uvfTSWL9+feF1VqxYEWeeeWZERFx55ZWF19g/1oFOzTQ2NsbXvva1OOmkkyKfz8eAAQNi0qRJ8fvf/77Jfi1dW+jKHBGBDmDfvn2xd+/eZtsP9Av6C1/4QixZsiS++MUvxle/+tXYuXNnzJ8/P84+++z45S9/GQMHDjzs8bdv3x6f+cxn4u/+7u9izpw58eijj8bs2bOjqqoqJk2adMDnTJ06NXbu3Bl33313LF26tHC651BHQjZt2hRf+MIXYujQoRER8Ytf/CJmzJgRW7dujdtuu+2w5vzoo49GQ0ND4X5jY2NMmzYtXn311cLr19XVxTHHHBMLFiyIY489Nnbu3BkPPvhgfOhDH4q1a9fGiSeeGGeccUYsXrw4rrzyyrj11ltjwoQJERGHPApyzTXXxKJFi2L69OkxceLE2LRpU/zDP/xDrFixIl588cWorKws7NuatYUuJQOSWbx4cRYRh7wNGzassP9zzz2XRUT2j//4j01eZ8uWLVmvXr2yL3/5yy0ab+PGjYVt48ePzyIie/7555vsO2rUqOzjH/944f7GjRuziMgWL15c2Pb1r3+92eu993XHjx9/0Lns27cve/fdd7P58+dnxxxzTNbY2HjI50ZENmfOnIO+3vTp07OysrLsqaeeOug+e/fuzfbs2ZOdcMIJ2Q033FDYvmrVqmY/235z5szJ3vtP5csvv5xFRHbttdc22e/555/PIiK7+eabm/wcLVlb6MqcmoEO4F/+5V9i1apVzW7nnntuk/2eeOKJyOVyccUVV8TevXsLt0GDBsWpp55aOCVxuAYNGhRnnXVWk21jxoyJ1157rbU/0gH97Gc/i4997GNRUVER3bt3jx49esRtt90Wb7zxRuzYsaPVr7tgwYL41re+Fd/+9rfjkksuKWzfu3dv3HHHHTFq1KgoLy+PsrKyKC8vj9/97nfx8ssvt2qs5cuXR0TElClTmmw/66yz4uSTT46f/vSnTba319pCqXJqBjqAk08+OcaNG9dse0VFRWzZsqVw/7//+78jy7KDnn4ZOXJkq8Y/5phjmm3L5/PxzjvvtOr1DuSFF16Iiy66KGpqauL++++PIUOGRHl5eTz22GNx++23t3qshx56KG6++ea47bbb4qqrrmry2KxZs+Kee+6JG2+8McaPHx9HH310dOvWLaZOndrq8d54442IiAO+86iqqqpZYLTH2kIpEyJQQiorKyOXy8XTTz8d+Xy+2eMH2tZRPPzww9GjR4944oknomfPnoXtjz32WKtfc9myZfG5z30upkyZEvPmzWv2+EMPPRSTJk2KO+64o8n2119/vdnbjVtqf1hs27at2XUkdXV1Ta4PAf40p2aghEycODGyLIutW7fGuHHjmt1OOeWUdp3P/vBpyf/uc7lclJWVRffu3Qvb3nnnnfjXf/3XVo29bt26+Ou//uu44IILYtGiRQcd8/1x9uSTT8bWrVubbDucn+OCCy6IiP+LnPdatWpVvPzyy3HhhRe2+GcAHBGBknLOOefE1VdfHVdeeWWsXr06zjvvvOjTp09s27YtnnnmmTjllFPimmuuabf57A+fb37zmzF58uTo0aNHnHjiidG3b99m+06YMCHuuuuu+Nu//du4+uqr44033og777yzVUdx6uvr4xOf+ET06tUr/v7v/77ZJ9OOGjUq+vXrFxMnTowlS5bESSedFGPGjIk1a9bE17/+9WZHMo4//vjo1atXfPe7342TTz45jjrqqKiqqoqqqqpmY5944olx9dVXx9133x3dunWLSy65pPCumerq6rjhhhsO++eBrkyIQIm577774sMf/nDcd999ce+990ZjY2NUVVXFOeec0+yiyGKrqamJ2bNnx4MPPhj3339/NDY2xvLlyw/40e4XXHBBfOc734mvfvWrcemll8Zxxx0Xn//852PAgAHNru34U3bu3Bnbtm2LiIg///M/b/b4/jl885vfjB49ekRtbW28+eabccYZZ8TSpUvj1ltvbbJ/79694zvf+U7MmzcvLrroonj33Xdjzpw5B/1I+YULF8bxxx8fDzzwQNxzzz1RUVERF198cdTW1h7wmhDg4HJZ1oJPEgIAKALXiAAAyQgRACAZIQIAJCNEAIBkhAgAkIwQAQCS6dCfI9LY2Bh1dXXRt2/fyOVyqacDALRAlmWxe/fuqKqqim7dDn3Mo0OHSF1dXVRXV6eeBgDQClu2bGn2Scbv16FDZP/HRG/ZsiX69euXeDYAQEvU19dHdXX1Ab/u4f06dIjsPx3Tr18/IQIAJaYll1W4WBUASEaIAADJCBEAIBkhAgAkI0QAgGSECACQjBABAJIRIgBAMkIEAEhGiAAAyQgRACAZIQIAJCNEAIBkhAgAkEyXDJG39+yN4Tc9GcNvejLe3rM39XQAoMvqkiECAHQMQgQASEaIAADJCBEAIBkhAgAkI0QAgGSECACQjBABAJIRIgBAMkIEAEhGiAAAyQgRACAZIQIAJCNEAIBkhAgAkIwQAQCSESIAQDJCBABIRogAAMkIEQAgGSECACQjRACAZIQIAJCMEAEAkhEiAEAyRQ2R2traOPPMM6Nv374xYMCA+OQnPxmvvPJKMYcEAEpIUUNk5cqVcd1118UvfvGLWLZsWezduzcuuuiieOutt4o5LABQIsqK+eI//OEPm9xfvHhxDBgwINasWRPnnXdeMYcGAEpAu14jsmvXroiI6N+/f3sOCwB0UEU9IvJeWZbFrFmz4txzz43Ro0cfcJ+GhoZoaGgo3K+vr2+v6QEACbTbEZHp06fHr371q/i3f/u3g+5TW1sbFRUVhVt1dXV7TQ8ASKBdQmTGjBnx+OOPx/Lly2PIkCEH3W/27Nmxa9euwm3Lli3tMT0AIJGinprJsixmzJgRjz76aKxYsSJGjBhxyP3z+Xzk8/liTgkA6ECKGiLXXXddfO9734t///d/j759+8b27dsjIqKioiJ69epVzKEBgBJQ1FMzCxcujF27dkVNTU0MHjy4cHvkkUeKOSwAUCKKfmoGAOBgfNcMAJCMEAEAkhEiAEAyQgQASEaIAADJCBEAIBkhAgAkI0QAgGSECACQjBABAJIRIgBAMkIEAEhGiET
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#He initialization\n",
"results_he=[np.sqrt(6.0/i) for i in values]\n",
"plt.errorbar(values,[0.0 for _ in values], yerr=results_he)\n",
"plt.title(\"He initialization\")\n",
"plt.xlabel(\"n\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "f7b0e872-947d-4fd3-9ab8-4b26fa72fe1a",
"metadata": {},
"outputs": [],
"source": [
"folder='/home/unipi/v.vichi3/Desktop/'\n",
"X_train, X_val, X_test, y_train, y_val, y_test=np.load(folder+'X_train.npy'), np.load(folder+'X_val.npy'), np.load(folder+'X_test.npy'), np.load(folder+'y_train.npy'), np.load(folder+'y_val.npy'), np.load(folder+'y_test.npy')"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "b6c28a1e-50b0-47ef-bb57-d3821542e8a4",
"metadata": {},
"outputs": [],
"source": [
"#Choose the most appropriate standard deviation for the Random Normal initializer\n",
"rand_norm=[keras.initializers.RandomNormal(mean=0.0,stddev=1),keras.initializers.RandomNormal(mean=0.0,stddev=0.1),keras.initializers.RandomNormal(mean=0.0,stddev=0.01),keras.initializers.RandomNormal(mean=0.0,stddev=0.001)]\n",
"models=np.zeros_like(rand_norm)\n",
"for i in range(len(models)):\n",
" models[i]=keras.models.Sequential()\n",
" models[i].add(keras.layers.Dense(units=32, activation='relu', input_dim=X_train.shape[1], kernel_initializer=rand_norm[i]))\n",
" models[i].add(keras.layers.Dense(units=32, activation='sigmoid', kernel_initializer=rand_norm[i]))\n",
" models[i].add(keras.layers.Dense(units=64, activation='sigmoid', kernel_initializer=rand_norm[i]))\n",
" models[i].add(keras.layers.Dense(units=1, activation='relu', kernel_initializer=rand_norm[i]))\n",
" models[i].compile(optimizer='adam',\n",
" loss='mean_squared_error',\n",
" metrics=['mean_absolute_error'])"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "0478e1aa-8975-4ed4-97e2-f8e7d65f09ec",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2024-05-06 20:06:06.530048: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:116] None of the MLIR optimization passes are enabled (registered 2)\n",
"2024-05-06 20:06:06.559170: I tensorflow/core/platform/profile_utils/cpu_utils.cc:112] CPU Frequency: 3892860000 Hz\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/50\n",
"18750/18750 [==============================] - 10s 534us/step - loss: 0.2688 - mean_absolute_error: 0.2058 - val_loss: 0.0168 - val_mean_absolute_error: 0.1058\n",
"Epoch 2/50\n",
"18750/18750 [==============================] - 6s 347us/step - loss: 0.0170 - mean_absolute_error: 0.1065 - val_loss: 0.0148 - val_mean_absolute_error: 0.0984\n",
"Epoch 3/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0150 - mean_absolute_error: 0.0994 - val_loss: 0.0149 - val_mean_absolute_error: 0.0999\n",
"Epoch 4/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0146 - mean_absolute_error: 0.0979 - val_loss: 0.0152 - val_mean_absolute_error: 0.1009\n",
"Epoch 5/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0145 - mean_absolute_error: 0.0971 - val_loss: 0.0144 - val_mean_absolute_error: 0.0962\n",
"Epoch 6/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0137 - mean_absolute_error: 0.0930 - val_loss: 0.0116 - val_mean_absolute_error: 0.0837\n",
"Epoch 7/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0113 - mean_absolute_error: 0.0825 - val_loss: 0.0113 - val_mean_absolute_error: 0.0814\n",
"Epoch 8/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0107 - mean_absolute_error: 0.0794 - val_loss: 0.0102 - val_mean_absolute_error: 0.0763\n",
"Epoch 9/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0104 - mean_absolute_error: 0.0777 - val_loss: 0.0100 - val_mean_absolute_error: 0.0758\n",
"Epoch 10/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0101 - mean_absolute_error: 0.0762 - val_loss: 0.0097 - val_mean_absolute_error: 0.0740\n",
"Epoch 11/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0098 - mean_absolute_error: 0.0749 - val_loss: 0.0096 - val_mean_absolute_error: 0.0750\n",
"Epoch 12/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0096 - mean_absolute_error: 0.0740 - val_loss: 0.0095 - val_mean_absolute_error: 0.0734\n",
"Epoch 13/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0089 - mean_absolute_error: 0.0707 - val_loss: 0.0084 - val_mean_absolute_error: 0.0677\n",
"Epoch 14/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0083 - mean_absolute_error: 0.0678 - val_loss: 0.0077 - val_mean_absolute_error: 0.0643\n",
"Epoch 15/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0080 - mean_absolute_error: 0.0661 - val_loss: 0.0080 - val_mean_absolute_error: 0.0667\n",
"Epoch 16/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0077 - mean_absolute_error: 0.0650 - val_loss: 0.0077 - val_mean_absolute_error: 0.0652\n",
"Epoch 17/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0077 - mean_absolute_error: 0.0646 - val_loss: 0.0074 - val_mean_absolute_error: 0.0629\n",
"Epoch 18/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0075 - mean_absolute_error: 0.0639 - val_loss: 0.0086 - val_mean_absolute_error: 0.0706\n",
"Epoch 19/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0074 - mean_absolute_error: 0.0633 - val_loss: 0.0070 - val_mean_absolute_error: 0.0607\n",
"Epoch 20/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0071 - mean_absolute_error: 0.0619 - val_loss: 0.0066 - val_mean_absolute_error: 0.0590\n",
"Epoch 21/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0068 - mean_absolute_error: 0.0604 - val_loss: 0.0067 - val_mean_absolute_error: 0.0599\n",
"Epoch 22/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0066 - mean_absolute_error: 0.0593 - val_loss: 0.0064 - val_mean_absolute_error: 0.0574\n",
"Epoch 23/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0064 - mean_absolute_error: 0.0583 - val_loss: 0.0066 - val_mean_absolute_error: 0.0611\n",
"Epoch 24/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0063 - mean_absolute_error: 0.0581 - val_loss: 0.0060 - val_mean_absolute_error: 0.0559\n",
"Epoch 25/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0062 - mean_absolute_error: 0.0574 - val_loss: 0.0069 - val_mean_absolute_error: 0.0618\n",
"Epoch 26/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0061 - mean_absolute_error: 0.0570 - val_loss: 0.0058 - val_mean_absolute_error: 0.0549\n",
"Epoch 27/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0060 - mean_absolute_error: 0.0564 - val_loss: 0.0058 - val_mean_absolute_error: 0.0549\n",
"Epoch 28/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0059 - mean_absolute_error: 0.0556 - val_loss: 0.0056 - val_mean_absolute_error: 0.0537\n",
"Epoch 29/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0058 - mean_absolute_error: 0.0550 - val_loss: 0.0059 - val_mean_absolute_error: 0.0561\n",
"Epoch 30/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0056 - mean_absolute_error: 0.0543 - val_loss: 0.0053 - val_mean_absolute_error: 0.0520\n",
"Epoch 31/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0054 - mean_absolute_error: 0.0530 - val_loss: 0.0052 - val_mean_absolute_error: 0.0526\n",
"Epoch 32/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0050 - mean_absolute_error: 0.0512 - val_loss: 0.0047 - val_mean_absolute_error: 0.0500\n",
"Epoch 33/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0047 - mean_absolute_error: 0.0495 - val_loss: 0.0045 - val_mean_absolute_error: 0.0475\n",
"Epoch 34/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0045 - mean_absolute_error: 0.0483 - val_loss: 0.0041 - val_mean_absolute_error: 0.0458\n",
"Epoch 35/50\n",
"18750/18750 [==============================] - 7s 349us/step - loss: 0.0044 - mean_absolute_error: 0.0478 - val_loss: 0.0047 - val_mean_absolute_error: 0.0497\n",
"Epoch 36/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0043 - mean_absolute_error: 0.0471 - val_loss: 0.0038 - val_mean_absolute_error: 0.0443\n",
"Epoch 37/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0041 - mean_absolute_error: 0.0465 - val_loss: 0.0039 - val_mean_absolute_error: 0.0447\n",
"Epoch 38/50\n",
"18750/18750 [==============================] - 7s 347us/step - loss: 0.0041 - mean_absolute_error: 0.0461 - val_loss: 0.0040 - val_mean_absolute_error: 0.0446\n",
"Epoch 39/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0040 - mean_absolute_error: 0.0457 - val_loss: 0.0036 - val_mean_absolute_error: 0.0430\n",
"Epoch 40/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0039 - mean_absolute_error: 0.0449 - val_loss: 0.0038 - val_mean_absolute_error: 0.0442\n",
"Epoch 41/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0039 - mean_absolute_error: 0.0446 - val_loss: 0.0037 - val_mean_absolute_error: 0.0433\n",
"Epoch 42/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 0.0038 - mean_absolute_error: 0.0441 - val_loss: 0.0035 - val_mean_absolute_error: 0.0425\n",
"Epoch 43/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0037 - mean_absolute_error: 0.0434 - val_loss: 0.0034 - val_mean_absolute_error: 0.0412\n",
"Epoch 44/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0036 - mean_absolute_error: 0.0428 - val_loss: 0.0035 - val_mean_absolute_error: 0.0421\n",
"Epoch 45/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0035 - mean_absolute_error: 0.0423 - val_loss: 0.0030 - val_mean_absolute_error: 0.0383\n",
"Epoch 46/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0033 - mean_absolute_error: 0.0410 - val_loss: 0.0035 - val_mean_absolute_error: 0.0417\n",
"Epoch 47/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0032 - mean_absolute_error: 0.0403 - val_loss: 0.0039 - val_mean_absolute_error: 0.0448\n",
"Epoch 48/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0030 - mean_absolute_error: 0.0392 - val_loss: 0.0028 - val_mean_absolute_error: 0.0380\n",
"Epoch 49/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0029 - mean_absolute_error: 0.0379 - val_loss: 0.0025 - val_mean_absolute_error: 0.0346\n",
"Epoch 50/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0027 - mean_absolute_error: 0.0367 - val_loss: 0.0024 - val_mean_absolute_error: 0.0350\n",
"Epoch 1/50\n",
"18750/18750 [==============================] - 7s 349us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 2/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0488 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 3/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 4/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 5/50\n",
"18750/18750 [==============================] - 6s 341us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 6/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 7/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 8/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 9/50\n",
"18750/18750 [==============================] - 6s 340us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 10/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 11/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0492 - mean_absolute_error: 0.1808 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 12/50\n",
"18750/18750 [==============================] - 6s 341us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 13/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0491 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 14/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 15/50\n",
"18750/18750 [==============================] - 6s 341us/step - loss: 0.0490 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 16/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 17/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 18/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 19/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 20/50\n",
"18750/18750 [==============================] - 6s 341us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 21/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0489 - mean_absolute_error: 0.1800 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 22/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 23/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 24/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0489 - mean_absolute_error: 0.1800 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 25/50\n",
"18750/18750 [==============================] - 6s 341us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 26/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0490 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 27/50\n",
"18750/18750 [==============================] - 6s 341us/step - loss: 0.0490 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 28/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0491 - mean_absolute_error: 0.1806 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 29/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 30/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0489 - mean_absolute_error: 0.1800 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 31/50\n",
"18750/18750 [==============================] - 6s 341us/step - loss: 0.0492 - mean_absolute_error: 0.1807 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 32/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 33/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 34/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 35/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 36/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0490 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 37/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 38/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 39/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0488 - mean_absolute_error: 0.1798 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 40/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 41/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0490 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 42/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0491 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 43/50\n",
"18750/18750 [==============================] - 6s 341us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 44/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 45/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 46/50\n",
"18750/18750 [==============================] - 6s 341us/step - loss: 0.0491 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 47/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0491 - mean_absolute_error: 0.1806 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 48/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 49/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0491 - mean_absolute_error: 0.1806 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 50/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 1/50\n",
"18750/18750 [==============================] - 7s 344us/step - loss: 0.0150 - mean_absolute_error: 0.0998 - val_loss: 0.0129 - val_mean_absolute_error: 0.0897\n",
"Epoch 2/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0119 - mean_absolute_error: 0.0854 - val_loss: 0.0091 - val_mean_absolute_error: 0.0733\n",
"Epoch 3/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0087 - mean_absolute_error: 0.0704 - val_loss: 0.0069 - val_mean_absolute_error: 0.0617\n",
"Epoch 4/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0064 - mean_absolute_error: 0.0590 - val_loss: 0.0055 - val_mean_absolute_error: 0.0534\n",
"Epoch 5/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0053 - mean_absolute_error: 0.0525 - val_loss: 0.0044 - val_mean_absolute_error: 0.0459\n",
"Epoch 6/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0047 - mean_absolute_error: 0.0484 - val_loss: 0.0038 - val_mean_absolute_error: 0.0430\n",
"Epoch 7/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0039 - mean_absolute_error: 0.0437 - val_loss: 0.0033 - val_mean_absolute_error: 0.0415\n",
"Epoch 8/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0031 - mean_absolute_error: 0.0394 - val_loss: 0.0058 - val_mean_absolute_error: 0.0613\n",
"Epoch 9/50\n",
"18750/18750 [==============================] - 7s 347us/step - loss: 0.0027 - mean_absolute_error: 0.0367 - val_loss: 0.0025 - val_mean_absolute_error: 0.0353\n",
"Epoch 10/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0025 - mean_absolute_error: 0.0348 - val_loss: 0.0024 - val_mean_absolute_error: 0.0352\n",
"Epoch 11/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0023 - mean_absolute_error: 0.0333 - val_loss: 0.0021 - val_mean_absolute_error: 0.0313\n",
"Epoch 12/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0020 - mean_absolute_error: 0.0316 - val_loss: 0.0030 - val_mean_absolute_error: 0.0397\n",
"Epoch 13/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0019 - mean_absolute_error: 0.0304 - val_loss: 0.0015 - val_mean_absolute_error: 0.0275\n",
"Epoch 14/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0017 - mean_absolute_error: 0.0292 - val_loss: 0.0017 - val_mean_absolute_error: 0.0285\n",
"Epoch 15/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0016 - mean_absolute_error: 0.0281 - val_loss: 0.0012 - val_mean_absolute_error: 0.0232\n",
"Epoch 16/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0015 - mean_absolute_error: 0.0274 - val_loss: 0.0014 - val_mean_absolute_error: 0.0271\n",
"Epoch 17/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0014 - mean_absolute_error: 0.0267 - val_loss: 0.0011 - val_mean_absolute_error: 0.0239\n",
"Epoch 18/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0013 - mean_absolute_error: 0.0260 - val_loss: 0.0014 - val_mean_absolute_error: 0.0241\n",
"Epoch 19/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0013 - mean_absolute_error: 0.0253 - val_loss: 0.0017 - val_mean_absolute_error: 0.0319\n",
"Epoch 20/50\n",
"18750/18750 [==============================] - 7s 347us/step - loss: 0.0012 - mean_absolute_error: 0.0250 - val_loss: 9.8871e-04 - val_mean_absolute_error: 0.0216\n",
"Epoch 21/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0012 - mean_absolute_error: 0.0244 - val_loss: 0.0011 - val_mean_absolute_error: 0.0236\n",
"Epoch 22/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0011 - mean_absolute_error: 0.0239 - val_loss: 0.0011 - val_mean_absolute_error: 0.0236\n",
"Epoch 23/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0011 - mean_absolute_error: 0.0236 - val_loss: 9.0454e-04 - val_mean_absolute_error: 0.0214\n",
"Epoch 24/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0011 - mean_absolute_error: 0.0231 - val_loss: 0.0014 - val_mean_absolute_error: 0.0249\n",
"Epoch 25/50\n",
"18750/18750 [==============================] - 7s 347us/step - loss: 0.0011 - mean_absolute_error: 0.0230 - val_loss: 0.0011 - val_mean_absolute_error: 0.0261\n",
"Epoch 26/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 9.8683e-04 - mean_absolute_error: 0.0224 - val_loss: 0.0011 - val_mean_absolute_error: 0.0246\n",
"Epoch 27/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 9.7194e-04 - mean_absolute_error: 0.0221 - val_loss: 7.0447e-04 - val_mean_absolute_error: 0.0185\n",
"Epoch 28/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 9.3784e-04 - mean_absolute_error: 0.0217 - val_loss: 7.0741e-04 - val_mean_absolute_error: 0.0189\n",
"Epoch 29/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 9.2258e-04 - mean_absolute_error: 0.0215 - val_loss: 9.2435e-04 - val_mean_absolute_error: 0.0206\n",
"Epoch 30/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 8.9570e-04 - mean_absolute_error: 0.0212 - val_loss: 8.0241e-04 - val_mean_absolute_error: 0.0210\n",
"Epoch 31/50\n",
"18750/18750 [==============================] - 6s 341us/step - loss: 8.8669e-04 - mean_absolute_error: 0.0210 - val_loss: 6.6892e-04 - val_mean_absolute_error: 0.0188\n",
"Epoch 32/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0011 - mean_absolute_error: 0.0228 - val_loss: 0.0011 - val_mean_absolute_error: 0.0238\n",
"Epoch 33/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0011 - mean_absolute_error: 0.0230 - val_loss: 0.0011 - val_mean_absolute_error: 0.0243\n",
"Epoch 34/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0010 - mean_absolute_error: 0.0222 - val_loss: 8.0839e-04 - val_mean_absolute_error: 0.0197\n",
"Epoch 35/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 9.2916e-04 - mean_absolute_error: 0.0215 - val_loss: 9.6287e-04 - val_mean_absolute_error: 0.0211\n",
"Epoch 36/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 9.0594e-04 - mean_absolute_error: 0.0213 - val_loss: 8.0006e-04 - val_mean_absolute_error: 0.0201\n",
"Epoch 37/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 8.8600e-04 - mean_absolute_error: 0.0210 - val_loss: 7.0352e-04 - val_mean_absolute_error: 0.0189\n",
"Epoch 38/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 8.5247e-04 - mean_absolute_error: 0.0206 - val_loss: 8.1930e-04 - val_mean_absolute_error: 0.0202\n",
"Epoch 39/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 8.4065e-04 - mean_absolute_error: 0.0205 - val_loss: 0.0012 - val_mean_absolute_error: 0.0235\n",
"Epoch 40/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 8.3871e-04 - mean_absolute_error: 0.0204 - val_loss: 0.0011 - val_mean_absolute_error: 0.0244\n",
"Epoch 41/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 8.2854e-04 - mean_absolute_error: 0.0203 - val_loss: 0.0013 - val_mean_absolute_error: 0.0254\n",
"Epoch 42/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 8.2941e-04 - mean_absolute_error: 0.0203 - val_loss: 8.3724e-04 - val_mean_absolute_error: 0.0222\n",
"Epoch 43/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 8.0728e-04 - mean_absolute_error: 0.0201 - val_loss: 0.0011 - val_mean_absolute_error: 0.0241\n",
"Epoch 44/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 8.1050e-04 - mean_absolute_error: 0.0200 - val_loss: 5.8376e-04 - val_mean_absolute_error: 0.0179\n",
"Epoch 45/50\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 8.0727e-04 - mean_absolute_error: 0.0200 - val_loss: 7.3209e-04 - val_mean_absolute_error: 0.0189\n",
"Epoch 46/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 7.8446e-04 - mean_absolute_error: 0.0197 - val_loss: 7.8105e-04 - val_mean_absolute_error: 0.0206\n",
"Epoch 47/50\n",
"18750/18750 [==============================] - 7s 347us/step - loss: 7.7875e-04 - mean_absolute_error: 0.0196 - val_loss: 9.5163e-04 - val_mean_absolute_error: 0.0221\n",
"Epoch 48/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 7.9367e-04 - mean_absolute_error: 0.0198 - val_loss: 5.8918e-04 - val_mean_absolute_error: 0.0176\n",
"Epoch 49/50\n",
"18750/18750 [==============================] - 7s 349us/step - loss: 7.8587e-04 - mean_absolute_error: 0.0198 - val_loss: 8.9809e-04 - val_mean_absolute_error: 0.0213\n",
"Epoch 50/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 7.6797e-04 - mean_absolute_error: 0.0195 - val_loss: 6.6490e-04 - val_mean_absolute_error: 0.0171\n",
"Epoch 1/50\n",
"18750/18750 [==============================] - 7s 345us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 2/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 3/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 4/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 5/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0492 - mean_absolute_error: 0.1806 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 6/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0491 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 7/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 8/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 9/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 10/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0490 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 11/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0490 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 12/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0491 - mean_absolute_error: 0.1806 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 13/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 14/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0488 - mean_absolute_error: 0.1800 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 15/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0491 - mean_absolute_error: 0.1807 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 16/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 17/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0490 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 18/50\n",
"18750/18750 [==============================] - 6s 341us/step - loss: 0.0491 - mean_absolute_error: 0.1806 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 19/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0490 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 20/50\n",
"18750/18750 [==============================] - 6s 338us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 21/50\n",
"18750/18750 [==============================] - 6s 340us/step - loss: 0.0491 - mean_absolute_error: 0.1806 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 22/50\n",
"18750/18750 [==============================] - 6s 341us/step - loss: 0.0492 - mean_absolute_error: 0.1806 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 23/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 24/50\n",
"18750/18750 [==============================] - 7s 365us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 25/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 26/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0490 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 27/50\n",
"18750/18750 [==============================] - 7s 353us/step - loss: 0.0490 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 28/50\n",
"18750/18750 [==============================] - 7s 350us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 29/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 30/50\n",
"18750/18750 [==============================] - 6s 341us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 31/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0489 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 32/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0490 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 33/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 34/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0490 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 35/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 36/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 37/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 38/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 39/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0488 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 40/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 41/50\n",
"18750/18750 [==============================] - 6s 341us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 42/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0489 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 43/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0491 - mean_absolute_error: 0.1806 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 44/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 45/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0492 - mean_absolute_error: 0.1807 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 46/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0492 - mean_absolute_error: 0.1807 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 47/50\n",
"18750/18750 [==============================] - 7s 350us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 48/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 49/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0490 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 50/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0491 - mean_absolute_error: 0.1806 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n"
]
}
],
"source": [
"histories=np.zeros_like(models)\n",
"for i in range(len(models)):\n",
" histories[i]=models[i].fit(X_train,y_train,\n",
" validation_data=(X_val,y_val),\n",
" batch_size=32,\n",
" epochs=50)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "05f6e494-47dd-4e9d-b152-750f5a5b6467",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHoCAYAAAClyIAVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACfWElEQVR4nOzdeVxU1fvA8c/INuwiiuCGO4qC+54obrjnluvPXEtNM23VzK0yTa0sQq2MLHOrTMu03LWvgkvuCu7ikiCKisoiAuf3x43RkUVAYFie9+s1L5gz5977zJ0Z5uHcs+iUUgohhBBCiCKomKkDEEIIIYQwFUmEhBBCCFFkSSIkhBBCiCJLEiEhhBBCFFmSCAkhhBCiyJJESAghhBBFliRCQgghhCiyJBESQgghRJEliZAQQgghiixJhIT4z9KlS9HpdOh0Onbu3JnqcaUUVatWRafT0bp16xw9tk6nY8aMGVneLiwsDJ1Ox9KlS3OkXmG1YsUKFixYkKo85bzMnz8/V48fGxvLjBkz0nxf5YSdO3em+77NjOy+//KT3D7HovCSREiIJ9jb2/Ptt9+mKt+1axfnz5/H3t7eBFGJZ5FeIpRXYmNjmTlzZq59SdevX5/g4GDq16+fre2Dg4MZOXJkDkeVt3L7HIvCSxIhIZ7Qr18/1qxZw927d43Kv/32W5o1a0aFChVMFJkoKmJjY7NU38HBgaZNm+Lg4JCt4zVt2pRy5cpla1shCjpJhIR4woABAwBYuXKloSw6Opo1a9YwfPjwNLe5desWr7zyCmXLlsXS0pLKlSszZcoUHjx4YFTv7t27vPTSSzg7O2NnZ0fHjh05c+ZMmvs8e/YsAwcOxMXFBSsrK2rWrElAQEAOPUvN7t27adu2Lfb29tjY2NC8eXM2bNhgVCc2NpY333yTSpUqodfrKVGiBA0bNjQ6PxcuXKB///6UKVMGKysrSpcuTdu2bTly5MhTY/j9999p1qwZNjY22Nvb0759e4KDg43qzJgxA51Ox8mTJxkwYACOjo6ULl2a4cOHEx0dneH+W7duzYYNG7h06ZLh0qdOp0tV79NPP6VSpUrY2dnRrFkz9u7dm6rOP//8Q/fu3SlRogR6vZ569erx008/ZXj8sLAwSpUqBcDMmTMNxx86dKjRczt06BB9+vTBycmJKlWqGI7Xv39/KlasiLW1NRUrVmTAgAFcunTJ6BhpXRobOnQodnZ2nDt3js6dO2NnZ0f58uV54403Ur0vn7w0lnKZeMeOHYwZM4aSJUvi7OxMr169uHbtmtG2Dx484I033sDV1RUbGxt8fHw4ePAgFStWNDzHjCxatIg6depgZ2eHvb09NWrU4N133zWqExERwahRoyhXrhyWlpZUqlSJmTNnkpiYmKlzLERGzE0dgBD5jYODA3369CEwMJBRo0YBWlJUrFgx+vXrl+oSS3x8PL6+vpw/f56ZM2fi7e3N//73P2bPns2RI0cMiYVSih49ehAUFMS0adNo1KgRe/bsoVOnTqliCAkJoXnz5lSoUIFPPvkEV1dXNm3axPjx47l58ybTp09/5ue5a9cu2rdvj7e3N99++y1WVlYsXLiQbt26sXLlSvr16wfA66+/zrJly/jwww+pV68eMTExnDhxgqioKMO+OnfuTFJSEnPnzqVChQrcvHmToKAg7ty5k2EMK1asYNCgQXTo0IGVK1fy4MED5s6dS+vWrdm2bRvPPfecUf3evXvTr18/RowYwfHjx5k8eTIAgYGB6R5j4cKFvPzyy5w/f561a9emWScgIIAaNWoYXtupU6fSuXNnLl68iKOjIwA7duygY8eONGnShMWLF+Po6MiqVavo168fsbGx6X7purm58ddff9GxY0dGjBhhuASV8sWdolevXvTv35/Ro0cTExMDaF/wHh4e9O/fnxIlShAeHs6iRYto1KgRISEhlCxZMsPz+/DhQ7p3786IESN44403+Pvvv/nggw9wdHRk2rRpGW4LMHLkSLp06cKKFSu4cuUKb731Fv/3f//H9u3bDXWGDRvG6tWrefvtt2nTpg0hISH07NkzVYtqWlatWsUrr7zCq6++yvz58ylWrBjnzp0jJCTEUCciIoLGjRtTrFgxpk2bRpUqVQgODubDDz8kLCyM7777LtPnWIg0KSGEUkqp7777TgHqwIEDaseOHQpQJ06cUEop1ahRIzV06FCllFK1atVSrVq1Mmy3ePFiBaiffvrJaH8ff/yxAtTmzZuVUkr9+eefClCff/65Ub1Zs2YpQE2fPt1Q5ufnp8qVK6eio6ON6o4bN07p9Xp169YtpZRSFy9eVID67rvvMnxuadVr2rSpcnFxUffu3TOUJSYmqtq1a6ty5cqp5ORkpZRStWvXVj169Eh33zdv3lSAWrBgQYYxPCkpKUmVKVNGeXl5qaSkJEP5vXv3lIuLi2revLmhbPr06QpQc+fONdrHK6+8ovR6vSHW9HTp0kW5u7unKk85L15eXioxMdFQvn//fgWolStXGspq1Kih6tWrpx4+fGi0j65duyo3Nzej5/CkGzdupHqNn3xu06ZNy/A5KKW9Pvfv31e2trZG76OU9+uOHTsMZUOGDEnzfdm5c2fl4eFhVPZkbCmfhVdeecWo3ty5cxWgwsPDlVJKnTx5UgHqnXfeMaq3cuVKBaghQ4Zk+HzGjRunihcvnmGdUaNGKTs7O3Xp0iWj8vnz5ytAnTx5UimV8TkWIiNyaUyINLRq1YoqVaoQGBjI8ePHOXDgQLqXxbZv346trS19+vQxKk9pIdi2bRugtSgADBo0yKjewIEDje7Hx8ezbds2evbsiY2NDYmJiYZb586diY+PT/OyTVbExMSwb98++vTpg52dnaHczMyMwYMHc/XqVU6fPg1A48aN+fPPP5k0aRI7d+4kLi7OaF8lSpSgSpUqzJs3j08//ZTDhw+TnJz81BhOnz7NtWvXGDx4MMWKPfpTZGdnR+/evdm7d2+qvjLdu3c3uu/t7U18fDyRkZFZPgeP69KlC2ZmZkb7BQyXoM6dO8epU6cMr92Tr0l4eLjhfGVX7969U5Xdv3+fd955h6pVq2Jubo65uTl2dnbExMQQGhr61H3qdDq6detmVObt7Z3q0lp60jrf8Oi87Nq1C4C+ffsa1evTpw/m5k+/4NC4cWPu3LnDgAED+O2337h582aqOn/88Qe+vr6UKVPG6LyntKSmxCBEdkkiJEQadDodw4YN48cff2Tx4sVUr16dli1bplk3KioKV1fXVP1OXFxcMDc3N1xCioqKwtzcHGdnZ6N6rq6uqfaXmJiIv78/FhYWRrfOnTsDpPmFkRW3b99GKYWbm1uqx8qUKWOIA+CLL77gnXfeYd26dfj6+lKiRAl69OjB2bNnAe1cbdu2DT8/P+bOnUv9+vUpVaoU48eP5969e+nGkLL/9GJITk7m9u3bRuVPnjsrKyuAVMlZVj1tv9evXwfgzTffTPWavPLKK8CzvyZpnYeBAwfy5ZdfMnLkSDZt2sT+/fs5cOAApUqVytRztrGxQa/Xp3pu8fHxmYrpaecl5TUsXbq0Ub203udpGTx4MIGBgVy6dInevXvj4uJCkyZN2LJli6HO9evXWb9+farzXqtWLeDZz7sQ0kdIiHQMHTqUadOmsXjxYmbNmpVuPWdnZ/bt24dSyigZioyMJDEx0dCPw9nZmcTERKKiooy+JCIiIoz25+TkZGiZGTt2bJrHrFSp0rM8NZycnChWrBjh4eGpHkvpDJsSt62tLTNnzmTmzJlcv37d0DrUrVs3Tp06BYC7u7thyoEzZ87w008/MWPGDBISEli8eHGaMaScg/RiKFasGE5OTs/0PHNKyrmYPHkyvXr1SrOOh4fHMx3jyUQ6OjqaP/74g+nTpzNp0iRD+YMHD7h169YzHSunpLyG169fp2zZsobylPd5ZgwbNoxhw4YRExPD33//zfTp0+natStnzpzB3d2dkiVL4u3tne5nMCVxFyK7JBESIh1ly5blrbfe4tSpUwwZMiTdem3btuWnn35i3bp19OzZ01D+ww8/GB4H8PX1Ze7cuSxfvpzx48c
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"colors=['orange','green','red','blue']\n",
"legend=['stddev=1.0','stddev=0.1','stddev=0.01','stddev=0.001']\n",
"for i in range(len(models)):\n",
" plt.plot(histories[i].history['loss'],color=colors[i])\n",
" plt.yscale('log')\n",
"plt.title('Model loss on the training set \\n for different values of the standard deviation \\n of the Random Normal initializer')\n",
"plt.xlabel('epoch')\n",
"plt.ylabel('mean squared error')\n",
"plt.legend(legend,loc='upper right')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "f60e6de6-5947-4b60-849f-39a7583eecf8",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHoCAYAAAChPVAoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChX0lEQVR4nOzdd3gUxRvA8e+lXSohCYGEFkIHIbTQpUNC74LAj66CigiIFJGmIFWlSLFQpIgoIIqgdFBJKEIoQkSB0BNKgARCeub3x5qD45KQS+GAvJ/nuSe5udndd/fusm9mdmd0SimFEEIIIUQeYmXpAIQQQgghnjRJgIQQQgiR50gCJIQQQog8RxIgIYQQQuQ5kgAJIYQQIs+RBEgIIYQQeY4kQEIIIYTIcyQBEkIIIUSeIwmQEEIIIfIcSYDEc2358uXodDp0Oh179uwxeV0pRenSpdHpdDRu3DhHt63T6Zg0aZLZy50/fx6dTsfy5ctzpN7z6ptvvmHOnDkm5anHZfbs2U8+qGwqUaIE/fr1Mzw35z2eNGkSOp0uS9tN71hC1j/HT5OgoCAmTZrEnTt3LB2KeIpIAiTyBBcXF5YsWWJSvnfvXs6ePYuLi4sFohLZkdFJ+3nh7e1NcHAwbdq0ydXtZHQsg4ODeeWVV3J1+7ktKCiIyZMnSwIkjEgCJPKE7t27s379eqKjo43KlyxZQt26dSlevLiFIhMifXq9njp16uDp6WmxGOrUqUPRokUttn0hcoskQCJP6NGjBwBr1qwxlEVFRbF+/XoGDBiQ5jK3bt3ijTfeoEiRItjZ2VGyZEnGjRtHfHy8Ub3o6GheffVVPDw8cHZ2pmXLlvzzzz9prvPff/+lZ8+eFCxYEL1eT4UKFViwYEEO7aXmjz/+oFmzZri4uODo6Ei9evXYvHmzUZ379+8zcuRIfH19sbe3x93dHX9/f6Pjc+7cOV5++WUKFy6MXq+nUKFCNGvWjKNHjz42hp9++om6devi6OiIi4sLLVq0IDg42KhOapfNyZMn6dGjB66urhQqVIgBAwYQFRWV4fobN27M5s2buXDhgqGLM63un08++QRfX1+cnZ2pW7cu+/fvN6nz559/0r59e9zd3bG3t6datWp89913GW4/MTGRggUL0rt3b5PX7ty5g4ODAyNGjAAgLi6Od955h6pVq+Lq6oq7uzt169blxx9/zHAbkH4X2ObNm6latSp6vR5fX990u/sWLFhAw4YNKViwIE5OTlSuXJmZM2eSmJhoqPO4Y5lWF9hff/1Fhw4dcHNzw97enqpVq/L1118b1dmzZw86nY41a9Ywbtw4ChcuTL58+WjevDmnT59+7L7fuHGD1157jWLFiqHX6/H09KR+/frs2LHDqN6OHTto1qwZ+fLlw9HRkfr167Nz507D65MmTeLdd98FwNfXN8MucZG32Fg6ACGehHz58tG1a1eWLl3KoEGDAC0ZsrKyonv37ibN/3FxcTRp0oSzZ88yefJk/Pz8+P3335k2bRpHjx41JBRKKTp27EhQUBATJkygZs2a7Nu3j1atWpnEcOrUKerVq0fx4sX5+OOP8fLyYuvWrQwdOpSbN28yceLEbO/n3r17adGiBX5+fixZsgS9Xs/ChQtp164da9asoXv37gCMGDGClStXMmXKFKpVq0ZMTAx//fUXkZGRhnW1bt2a5ORkZs6cSfHixbl58yZBQUGP7Ub45ptv6NWrFwEBAaxZs4b4+HhmzpxJ48aN2blzJy+++KJR/S5dutC9e3cGDhzIiRMnGDt2LABLly5NdxsLFy7ktdde4+zZs/zwww9p1lmwYAHly5c3vLfjx4+ndevWhIWF4erqCsDu3btp2bIltWvXZvHixbi6uvLtt9/SvXt37t+/b3Q9zsNsbW353//+x+LFi1mwYAH58uUzvLZmzRri4uLo378/APHx8dy6dYuRI0dSpEgREhIS2LFjB507d2bZsmX06dMnw+P5qJ07d9KhQwfq1q3Lt99+a3iPrl27ZlL37Nmz9OzZE19fX+zs7Dh27BhTp07l77//NhzfzBzLh50+fZp69epRsGBB5s2bh4eHB6tWraJfv35cu3aNUaNGGdV/7733qF+/Pl999RXR0dGMHj2adu3aERoairW1dbrb6d27N0eOHGHq1KmULVuWO3fucOTIEaPP6KpVq+jTpw8dOnTg66+/xtbWls8//5zAwEC2bt1Ks2bNeOWVV7h16xbz589nw4YNeHt7A1CxYsVMHW/xHFNCPMeWLVumAHXo0CG1e/duBai//vpLKaVUzZo1Vb9+/ZRSSr3wwguqUaNGhuUWL16sAPXdd98ZrW/GjBkKUNu2bVNKKfXLL78oQM2dO9eo3tSpUxWgJk6caCgLDAxURYsWVVFRUUZ1hwwZouzt7dWtW7eUUkqFhYUpQC1btizDfUurXp06dVTBggXV3bt3DWVJSUmqUqVKqmjRoiolJUUppVSlSpVUx44d0133zZs3FaDmzJmTYQyPSk5OVoULF1aVK1dWycnJhvK7d++qggULqnr16hnKJk6cqAA1c+ZMo3W88cYbyt7e3hBretq0aaN8fHxMylOPS+XKlVVSUpKh/ODBgwpQa9asMZSVL19eVatWTSUmJhqto23btsrb29toHx51/PhxBagvvvjCqLxWrVqqRo0a6S6XlJSkEhMT1cCBA1W1atWMXvPx8VF9+/Y12ZeH3+PatWurwoULq9jYWENZdHS0cnd3Vxn9SU9OTlaJiYlqxYoVytra2vB5Uyr9Y6mUMvkcv/zyy0qv16uLFy8a1WvVqpVydHRUd+7cUUopw/etdevWRvW+++47Bajg4OB0Y1VKKWdnZzVs2LB0X4+JiVHu7u6qXbt2JvtZpUoVVatWLUPZrFmzFKDCwsIy3KbIW6QLTOQZjRo1olSpUixdupQTJ05w6NChdLu/du3ahZOTE127djUqT20RSG1i3717NwC9evUyqtezZ0+j53FxcezcuZNOnTrh6OhIUlKS4dG6dWvi4uLS7J4xR0xMDAcOHKBr1644Ozsbyq2trenduzeXL182dD3UqlWLX375hTFjxrBnzx5iY2ON1uXu7k6pUqWYNWsWn3zyCSEhIaSkpDw2htOnT3P16lV69+6NldWDPy/Ozs506dKF/fv3c//+faNl2rdvb/Tcz8+PuLg4rl+/bvYxeFibNm2MWhj8/PwAuHDhAgBnzpzh77//Nrx3j74n4eHhGXbVVK5cmRo1arBs2TJDWWhoKAcPHjT5XH3//ffUr18fZ2dnbGxssLW1ZcmSJYSGhpq1TzExMRw6dIjOnTtjb29vKHdxcaFdu3Ym9UNCQmjfvj0eHh5YW1tja2tLnz59SE5OTreb9nF27dpFs2bNKFasmFF5v379uH//vklXZ1rvLzx4H9JTq1Ytli9fzpQpU9i/f79Rtx1oFzbfunWLvn37Gr13KSkptGzZkkOHDhETE5OlfRR5gyRAIs/Q6XT079+fVatWsXjxYsqWLUuDBg3SrBsZGYmXl5fJdSUFCxbExsbG0AwfGRmJjY0NHh4eRvW8vLxM1peUlMT8+fOxtbU1erRu3RqAmzdvZmv/bt++jVLK0MT/sMKFCxviAJg3bx6jR49m48aNNGnSBHd3dzp27Mi///4LaMdq586dBAYGMnPmTKpXr46npydDhw7l7t276caQuv70YkhJSeH27dtG5Y8eO71eD2CSlJnrcetN7TIaOXKkyXvyxhtvAI9/TwYMGEBwcDB///03AMuWLUOv1xuuOQPYsGED3bp1o0iRIqxatYrg4GBD8h0XF2fWPt2+fZuUlBSTzxeYfuYuXrxIgwYNuHLlCnPnzuX333/n0KFDhmvOsnp8IyMjM/UZS5XV93ft2rX07duXr776irp16+Lu7k6fPn2IiIgAHrx/Xbt2NXn/ZsyYgVKKW7duZWkfRd4g1wCJPKVfv35MmDCBxYsXM3Xq1HTreXh4cODAAZRSRknQ9evXSUpKokCBAoZ6SUlJREZGGv2hT/0jncrNzc3QEvPmm2+muU1fX9/s7Bpubm5YWVkRHh5u8trVq1cBDHE7OTk
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"colors=['orange','green','red','blue']\n",
"legend=['stddev=1.0','stddev=0.1','stddev=0.01','stddev=0.001']\n",
"for i in range(len(models)):\n",
" plt.plot(histories[i].history['val_loss'],color=colors[i])\n",
"plt.title('Model loss on the validation set \\n for different values of the standard deviation \\n of the Random Normal initializer')\n",
"plt.xlabel('epoch')\n",
"plt.ylabel('mean squared error')\n",
"plt.legend(legend,loc='upper right')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "1bbc4a9c-5d06-493d-afdd-83d344551eaf",
"metadata": {},
"outputs": [],
"source": [
"#Choose the most appropriate range for the Random Uniform initializer\n",
"rand_unif=[keras.initializers.RandomUniform(minval=-1,maxval=1),keras.initializers.RandomUniform(minval=-0.1,maxval=0.1),keras.initializers.RandomUniform(minval=-0.01,maxval=0.01),keras.initializers.RandomUniform(minval=-0.001,maxval=0.001)]\n",
"models=np.zeros_like(rand_unif)\n",
"for i in range(len(models)):\n",
" models[i]=keras.models.Sequential()\n",
" models[i].add(keras.layers.Dense(units=32, activation='relu', input_dim=X_train.shape[1], kernel_initializer=rand_unif[i]))\n",
" models[i].add(keras.layers.Dense(units=32, activation='sigmoid', kernel_initializer=rand_unif[i]))\n",
" models[i].add(keras.layers.Dense(units=64, activation='sigmoid', kernel_initializer=rand_unif[i]))\n",
" models[i].add(keras.layers.Dense(units=1, activation='relu', kernel_initializer=rand_unif[i]))\n",
" models[i].compile(optimizer='adam',\n",
" loss='mean_squared_error',\n",
" metrics=['mean_absolute_error'])"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "fd398685-3b29-4270-822b-366b38024408",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/50\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0434 - mean_absolute_error: 0.1312 - val_loss: 0.0149 - val_mean_absolute_error: 0.0997\n",
"Epoch 2/50\n",
"18750/18750 [==============================] - 7s 351us/step - loss: 0.0145 - mean_absolute_error: 0.0974 - val_loss: 0.0139 - val_mean_absolute_error: 0.0945\n",
"Epoch 3/50\n",
"18750/18750 [==============================] - 7s 349us/step - loss: 0.0133 - mean_absolute_error: 0.0914 - val_loss: 0.0115 - val_mean_absolute_error: 0.0835\n",
"Epoch 4/50\n",
"18750/18750 [==============================] - 7s 349us/step - loss: 0.0112 - mean_absolute_error: 0.0823 - val_loss: 0.0106 - val_mean_absolute_error: 0.0795\n",
"Epoch 5/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0104 - mean_absolute_error: 0.0787 - val_loss: 0.0113 - val_mean_absolute_error: 0.0832\n",
"Epoch 6/50\n",
"18750/18750 [==============================] - 7s 351us/step - loss: 0.0093 - mean_absolute_error: 0.0734 - val_loss: 0.0087 - val_mean_absolute_error: 0.0706\n",
"Epoch 7/50\n",
"18750/18750 [==============================] - 7s 349us/step - loss: 0.0085 - mean_absolute_error: 0.0692 - val_loss: 0.0078 - val_mean_absolute_error: 0.0643\n",
"Epoch 8/50\n",
"18750/18750 [==============================] - 7s 350us/step - loss: 0.0075 - mean_absolute_error: 0.0642 - val_loss: 0.0072 - val_mean_absolute_error: 0.0641\n",
"Epoch 9/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 0.0068 - mean_absolute_error: 0.0604 - val_loss: 0.0071 - val_mean_absolute_error: 0.0637\n",
"Epoch 10/50\n",
"18750/18750 [==============================] - 7s 352us/step - loss: 0.0063 - mean_absolute_error: 0.0579 - val_loss: 0.0060 - val_mean_absolute_error: 0.0572\n",
"Epoch 11/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0059 - mean_absolute_error: 0.0559 - val_loss: 0.0062 - val_mean_absolute_error: 0.0591\n",
"Epoch 12/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0057 - mean_absolute_error: 0.0544 - val_loss: 0.0056 - val_mean_absolute_error: 0.0533\n",
"Epoch 13/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 0.0054 - mean_absolute_error: 0.0530 - val_loss: 0.0055 - val_mean_absolute_error: 0.0544\n",
"Epoch 14/50\n",
"18750/18750 [==============================] - 7s 347us/step - loss: 0.0051 - mean_absolute_error: 0.0515 - val_loss: 0.0048 - val_mean_absolute_error: 0.0493\n",
"Epoch 15/50\n",
"18750/18750 [==============================] - 7s 349us/step - loss: 0.0050 - mean_absolute_error: 0.0506 - val_loss: 0.0045 - val_mean_absolute_error: 0.0468\n",
"Epoch 16/50\n",
"18750/18750 [==============================] - 7s 350us/step - loss: 0.0048 - mean_absolute_error: 0.0496 - val_loss: 0.0050 - val_mean_absolute_error: 0.0511\n",
"Epoch 17/50\n",
"18750/18750 [==============================] - 7s 347us/step - loss: 0.0047 - mean_absolute_error: 0.0490 - val_loss: 0.0041 - val_mean_absolute_error: 0.0449\n",
"Epoch 18/50\n",
"18750/18750 [==============================] - 7s 347us/step - loss: 0.0045 - mean_absolute_error: 0.0480 - val_loss: 0.0049 - val_mean_absolute_error: 0.0529\n",
"Epoch 19/50\n",
"18750/18750 [==============================] - 7s 350us/step - loss: 0.0042 - mean_absolute_error: 0.0468 - val_loss: 0.0039 - val_mean_absolute_error: 0.0458\n",
"Epoch 20/50\n",
"18750/18750 [==============================] - 7s 352us/step - loss: 0.0040 - mean_absolute_error: 0.0451 - val_loss: 0.0035 - val_mean_absolute_error: 0.0426\n",
"Epoch 21/50\n",
"18750/18750 [==============================] - 7s 350us/step - loss: 0.0037 - mean_absolute_error: 0.0439 - val_loss: 0.0036 - val_mean_absolute_error: 0.0437\n",
"Epoch 22/50\n",
"18750/18750 [==============================] - 7s 350us/step - loss: 0.0035 - mean_absolute_error: 0.0422 - val_loss: 0.0034 - val_mean_absolute_error: 0.0438\n",
"Epoch 23/50\n",
"18750/18750 [==============================] - 7s 349us/step - loss: 0.0032 - mean_absolute_error: 0.0402 - val_loss: 0.0035 - val_mean_absolute_error: 0.0438\n",
"Epoch 24/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 0.0030 - mean_absolute_error: 0.0390 - val_loss: 0.0029 - val_mean_absolute_error: 0.0398\n",
"Epoch 25/50\n",
"18750/18750 [==============================] - 7s 349us/step - loss: 0.0029 - mean_absolute_error: 0.0384 - val_loss: 0.0029 - val_mean_absolute_error: 0.0374\n",
"Epoch 26/50\n",
"18750/18750 [==============================] - 7s 350us/step - loss: 0.0028 - mean_absolute_error: 0.0378 - val_loss: 0.0023 - val_mean_absolute_error: 0.0337\n",
"Epoch 27/50\n",
"18750/18750 [==============================] - 7s 353us/step - loss: 0.0027 - mean_absolute_error: 0.0374 - val_loss: 0.0027 - val_mean_absolute_error: 0.0382\n",
"Epoch 28/50\n",
"18750/18750 [==============================] - 7s 350us/step - loss: 0.0026 - mean_absolute_error: 0.0366 - val_loss: 0.0022 - val_mean_absolute_error: 0.0327\n",
"Epoch 29/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 0.0025 - mean_absolute_error: 0.0359 - val_loss: 0.0021 - val_mean_absolute_error: 0.0323\n",
"Epoch 30/50\n",
"18750/18750 [==============================] - 7s 351us/step - loss: 0.0025 - mean_absolute_error: 0.0356 - val_loss: 0.0027 - val_mean_absolute_error: 0.0367\n",
"Epoch 31/50\n",
"18750/18750 [==============================] - 7s 352us/step - loss: 0.0024 - mean_absolute_error: 0.0351 - val_loss: 0.0023 - val_mean_absolute_error: 0.0333\n",
"Epoch 32/50\n",
"18750/18750 [==============================] - 7s 347us/step - loss: 0.0024 - mean_absolute_error: 0.0347 - val_loss: 0.0020 - val_mean_absolute_error: 0.0301\n",
"Epoch 33/50\n",
"18750/18750 [==============================] - 7s 349us/step - loss: 0.0022 - mean_absolute_error: 0.0338 - val_loss: 0.0019 - val_mean_absolute_error: 0.0300\n",
"Epoch 34/50\n",
"18750/18750 [==============================] - 7s 351us/step - loss: 0.0022 - mean_absolute_error: 0.0332 - val_loss: 0.0025 - val_mean_absolute_error: 0.0371\n",
"Epoch 35/50\n",
"18750/18750 [==============================] - 7s 349us/step - loss: 0.0021 - mean_absolute_error: 0.0328 - val_loss: 0.0020 - val_mean_absolute_error: 0.0318\n",
"Epoch 36/50\n",
"18750/18750 [==============================] - 7s 350us/step - loss: 0.0021 - mean_absolute_error: 0.0324 - val_loss: 0.0023 - val_mean_absolute_error: 0.0337\n",
"Epoch 37/50\n",
"18750/18750 [==============================] - 7s 351us/step - loss: 0.0021 - mean_absolute_error: 0.0324 - val_loss: 0.0017 - val_mean_absolute_error: 0.0283\n",
"Epoch 38/50\n",
"18750/18750 [==============================] - 7s 352us/step - loss: 0.0020 - mean_absolute_error: 0.0321 - val_loss: 0.0016 - val_mean_absolute_error: 0.0269\n",
"Epoch 39/50\n",
"18750/18750 [==============================] - 7s 351us/step - loss: 0.0020 - mean_absolute_error: 0.0317 - val_loss: 0.0022 - val_mean_absolute_error: 0.0339\n",
"Epoch 40/50\n",
"18750/18750 [==============================] - 7s 350us/step - loss: 0.0020 - mean_absolute_error: 0.0318 - val_loss: 0.0018 - val_mean_absolute_error: 0.0306\n",
"Epoch 41/50\n",
"18750/18750 [==============================] - 7s 351us/step - loss: 0.0019 - mean_absolute_error: 0.0312 - val_loss: 0.0020 - val_mean_absolute_error: 0.0321\n",
"Epoch 42/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0020 - mean_absolute_error: 0.0313 - val_loss: 0.0017 - val_mean_absolute_error: 0.0295\n",
"Epoch 43/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 0.0019 - mean_absolute_error: 0.0311 - val_loss: 0.0020 - val_mean_absolute_error: 0.0318\n",
"Epoch 44/50\n",
"18750/18750 [==============================] - 7s 350us/step - loss: 0.0019 - mean_absolute_error: 0.0309 - val_loss: 0.0015 - val_mean_absolute_error: 0.0266\n",
"Epoch 45/50\n",
"18750/18750 [==============================] - 7s 351us/step - loss: 0.0019 - mean_absolute_error: 0.0308 - val_loss: 0.0017 - val_mean_absolute_error: 0.0277\n",
"Epoch 46/50\n",
"18750/18750 [==============================] - 7s 350us/step - loss: 0.0019 - mean_absolute_error: 0.0307 - val_loss: 0.0021 - val_mean_absolute_error: 0.0339\n",
"Epoch 47/50\n",
"18750/18750 [==============================] - 7s 350us/step - loss: 0.0019 - mean_absolute_error: 0.0306 - val_loss: 0.0019 - val_mean_absolute_error: 0.0312\n",
"Epoch 48/50\n",
"18750/18750 [==============================] - 7s 353us/step - loss: 0.0018 - mean_absolute_error: 0.0302 - val_loss: 0.0016 - val_mean_absolute_error: 0.0289\n",
"Epoch 49/50\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0018 - mean_absolute_error: 0.0299 - val_loss: 0.0018 - val_mean_absolute_error: 0.0299\n",
"Epoch 50/50\n",
"18750/18750 [==============================] - 7s 349us/step - loss: 0.0018 - mean_absolute_error: 0.0297 - val_loss: 0.0015 - val_mean_absolute_error: 0.0261\n",
"Epoch 1/50\n",
"18750/18750 [==============================] - 7s 349us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 2/50\n",
"18750/18750 [==============================] - 7s 350us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 3/50\n",
"18750/18750 [==============================] - 7s 347us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 4/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 5/50\n",
"18750/18750 [==============================] - 7s 349us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 6/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 7/50\n",
"18750/18750 [==============================] - 7s 349us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 8/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 9/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 0.0488 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 10/50\n",
"18750/18750 [==============================] - 7s 350us/step - loss: 0.0491 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 11/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 12/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 13/50\n",
"18750/18750 [==============================] - 7s 352us/step - loss: 0.0492 - mean_absolute_error: 0.1808 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 14/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 15/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 16/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0489 - mean_absolute_error: 0.1800 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 17/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 18/50\n",
"18750/18750 [==============================] - 7s 350us/step - loss: 0.0491 - mean_absolute_error: 0.1806 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 19/50\n",
"18750/18750 [==============================] - 7s 350us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 20/50\n",
"18750/18750 [==============================] - 7s 347us/step - loss: 0.0489 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 21/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 22/50\n",
"18750/18750 [==============================] - 7s 352us/step - loss: 0.0490 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 23/50\n",
"18750/18750 [==============================] - 7s 349us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 24/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 25/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 26/50\n",
"18750/18750 [==============================] - 7s 347us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 27/50\n",
"18750/18750 [==============================] - 7s 349us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 28/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0491 - mean_absolute_error: 0.1806 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 29/50\n",
"18750/18750 [==============================] - 7s 347us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 30/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 31/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0491 - mean_absolute_error: 0.1806 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 32/50\n",
"18750/18750 [==============================] - 7s 347us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 33/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 34/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 0.0490 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 35/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 36/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 37/50\n",
"18750/18750 [==============================] - 7s 347us/step - loss: 0.0489 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 38/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 0.0490 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 39/50\n",
"18750/18750 [==============================] - 7s 349us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 40/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 41/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 42/50\n",
"18750/18750 [==============================] - 7s 347us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 43/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 44/50\n",
"18750/18750 [==============================] - 7s 351us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 45/50\n",
"18750/18750 [==============================] - 7s 347us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 46/50\n",
"18750/18750 [==============================] - 7s 349us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 47/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 48/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 49/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 50/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 0.0492 - mean_absolute_error: 0.1807 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 1/50\n",
"18750/18750 [==============================] - 7s 351us/step - loss: 0.0150 - mean_absolute_error: 0.1000 - val_loss: 0.0116 - val_mean_absolute_error: 0.0834\n",
"Epoch 2/50\n",
"18750/18750 [==============================] - 7s 347us/step - loss: 0.0109 - mean_absolute_error: 0.0814 - val_loss: 0.0084 - val_mean_absolute_error: 0.0684\n",
"Epoch 3/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 0.0078 - mean_absolute_error: 0.0658 - val_loss: 0.0060 - val_mean_absolute_error: 0.0563\n",
"Epoch 4/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 0.0062 - mean_absolute_error: 0.0572 - val_loss: 0.0056 - val_mean_absolute_error: 0.0530\n",
"Epoch 5/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0054 - mean_absolute_error: 0.0531 - val_loss: 0.0044 - val_mean_absolute_error: 0.0480\n",
"Epoch 6/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 0.0046 - mean_absolute_error: 0.0486 - val_loss: 0.0044 - val_mean_absolute_error: 0.0471\n",
"Epoch 7/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0038 - mean_absolute_error: 0.0443 - val_loss: 0.0037 - val_mean_absolute_error: 0.0437\n",
"Epoch 8/50\n",
"18750/18750 [==============================] - 6s 347us/step - loss: 0.0034 - mean_absolute_error: 0.0418 - val_loss: 0.0041 - val_mean_absolute_error: 0.0494\n",
"Epoch 9/50\n",
"18750/18750 [==============================] - 6s 347us/step - loss: 0.0031 - mean_absolute_error: 0.0397 - val_loss: 0.0035 - val_mean_absolute_error: 0.0442\n",
"Epoch 10/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 0.0029 - mean_absolute_error: 0.0380 - val_loss: 0.0023 - val_mean_absolute_error: 0.0329\n",
"Epoch 11/50\n",
"18750/18750 [==============================] - 7s 349us/step - loss: 0.0027 - mean_absolute_error: 0.0366 - val_loss: 0.0024 - val_mean_absolute_error: 0.0336\n",
"Epoch 12/50\n",
"18750/18750 [==============================] - 7s 349us/step - loss: 0.0025 - mean_absolute_error: 0.0354 - val_loss: 0.0020 - val_mean_absolute_error: 0.0306\n",
"Epoch 13/50\n",
"18750/18750 [==============================] - 7s 349us/step - loss: 0.0024 - mean_absolute_error: 0.0343 - val_loss: 0.0020 - val_mean_absolute_error: 0.0306\n",
"Epoch 14/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0022 - mean_absolute_error: 0.0332 - val_loss: 0.0022 - val_mean_absolute_error: 0.0327\n",
"Epoch 15/50\n",
"18750/18750 [==============================] - 7s 353us/step - loss: 0.0021 - mean_absolute_error: 0.0324 - val_loss: 0.0023 - val_mean_absolute_error: 0.0333\n",
"Epoch 16/50\n",
"18750/18750 [==============================] - 7s 350us/step - loss: 0.0021 - mean_absolute_error: 0.0317 - val_loss: 0.0025 - val_mean_absolute_error: 0.0344\n",
"Epoch 17/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0020 - mean_absolute_error: 0.0310 - val_loss: 0.0019 - val_mean_absolute_error: 0.0309\n",
"Epoch 18/50\n",
"18750/18750 [==============================] - 7s 347us/step - loss: 0.0019 - mean_absolute_error: 0.0302 - val_loss: 0.0021 - val_mean_absolute_error: 0.0352\n",
"Epoch 19/50\n",
"18750/18750 [==============================] - 7s 352us/step - loss: 0.0018 - mean_absolute_error: 0.0297 - val_loss: 0.0016 - val_mean_absolute_error: 0.0269\n",
"Epoch 20/50\n",
"18750/18750 [==============================] - 7s 351us/step - loss: 0.0017 - mean_absolute_error: 0.0292 - val_loss: 0.0015 - val_mean_absolute_error: 0.0259\n",
"Epoch 21/50\n",
"18750/18750 [==============================] - 7s 351us/step - loss: 0.0017 - mean_absolute_error: 0.0288 - val_loss: 0.0015 - val_mean_absolute_error: 0.0279\n",
"Epoch 22/50\n",
"18750/18750 [==============================] - 7s 352us/step - loss: 0.0016 - mean_absolute_error: 0.0281 - val_loss: 0.0014 - val_mean_absolute_error: 0.0259\n",
"Epoch 23/50\n",
"18750/18750 [==============================] - 7s 347us/step - loss: 0.0016 - mean_absolute_error: 0.0276 - val_loss: 0.0015 - val_mean_absolute_error: 0.0279\n",
"Epoch 24/50\n",
"18750/18750 [==============================] - 7s 349us/step - loss: 0.0015 - mean_absolute_error: 0.0273 - val_loss: 0.0014 - val_mean_absolute_error: 0.0263\n",
"Epoch 25/50\n",
"18750/18750 [==============================] - 6s 347us/step - loss: 0.0015 - mean_absolute_error: 0.0271 - val_loss: 0.0011 - val_mean_absolute_error: 0.0228\n",
"Epoch 26/50\n",
"18750/18750 [==============================] - 7s 352us/step - loss: 0.0014 - mean_absolute_error: 0.0266 - val_loss: 0.0013 - val_mean_absolute_error: 0.0245\n",
"Epoch 27/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 0.0014 - mean_absolute_error: 0.0263 - val_loss: 0.0010 - val_mean_absolute_error: 0.0223\n",
"Epoch 28/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0014 - mean_absolute_error: 0.0260 - val_loss: 0.0013 - val_mean_absolute_error: 0.0259\n",
"Epoch 29/50\n",
"18750/18750 [==============================] - 7s 351us/step - loss: 0.0013 - mean_absolute_error: 0.0258 - val_loss: 0.0013 - val_mean_absolute_error: 0.0257\n",
"Epoch 30/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 0.0013 - mean_absolute_error: 0.0253 - val_loss: 0.0013 - val_mean_absolute_error: 0.0253\n",
"Epoch 31/50\n",
"18750/18750 [==============================] - 7s 347us/step - loss: 0.0013 - mean_absolute_error: 0.0252 - val_loss: 9.8709e-04 - val_mean_absolute_error: 0.0218\n",
"Epoch 32/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 0.0013 - mean_absolute_error: 0.0251 - val_loss: 0.0012 - val_mean_absolute_error: 0.0232\n",
"Epoch 33/50\n",
"18750/18750 [==============================] - 7s 351us/step - loss: 0.0012 - mean_absolute_error: 0.0246 - val_loss: 0.0011 - val_mean_absolute_error: 0.0228\n",
"Epoch 34/50\n",
"18750/18750 [==============================] - 7s 349us/step - loss: 0.0012 - mean_absolute_error: 0.0244 - val_loss: 0.0027 - val_mean_absolute_error: 0.0416\n",
"Epoch 35/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 0.0012 - mean_absolute_error: 0.0242 - val_loss: 0.0021 - val_mean_absolute_error: 0.0340\n",
"Epoch 36/50\n",
"18750/18750 [==============================] - 7s 347us/step - loss: 0.0011 - mean_absolute_error: 0.0239 - val_loss: 9.6532e-04 - val_mean_absolute_error: 0.0216\n",
"Epoch 37/50\n",
"18750/18750 [==============================] - 7s 350us/step - loss: 0.0011 - mean_absolute_error: 0.0235 - val_loss: 0.0011 - val_mean_absolute_error: 0.0226\n",
"Epoch 38/50\n",
"18750/18750 [==============================] - 7s 352us/step - loss: 0.0011 - mean_absolute_error: 0.0233 - val_loss: 0.0014 - val_mean_absolute_error: 0.0288\n",
"Epoch 39/50\n",
"18750/18750 [==============================] - 7s 349us/step - loss: 0.0011 - mean_absolute_error: 0.0232 - val_loss: 0.0012 - val_mean_absolute_error: 0.0265\n",
"Epoch 40/50\n",
"18750/18750 [==============================] - 7s 348us/step - loss: 0.0011 - mean_absolute_error: 0.0231 - val_loss: 9.5703e-04 - val_mean_absolute_error: 0.0211\n",
"Epoch 41/50\n",
"18750/18750 [==============================] - 7s 350us/step - loss: 0.0010 - mean_absolute_error: 0.0226 - val_loss: 0.0012 - val_mean_absolute_error: 0.0249\n",
"Epoch 42/50\n",
"18750/18750 [==============================] - 7s 349us/step - loss: 0.0010 - mean_absolute_error: 0.0227 - val_loss: 0.0011 - val_mean_absolute_error: 0.0229\n",
"Epoch 43/50\n",
"18750/18750 [==============================] - 7s 353us/step - loss: 0.0010 - mean_absolute_error: 0.0224 - val_loss: 0.0011 - val_mean_absolute_error: 0.0229\n",
"Epoch 44/50\n",
"18750/18750 [==============================] - 7s 353us/step - loss: 9.9677e-04 - mean_absolute_error: 0.0223 - val_loss: 9.2860e-04 - val_mean_absolute_error: 0.0218\n",
"Epoch 45/50\n",
"18750/18750 [==============================] - 7s 350us/step - loss: 9.8307e-04 - mean_absolute_error: 0.0221 - val_loss: 0.0014 - val_mean_absolute_error: 0.0275\n",
"Epoch 46/50\n",
"18750/18750 [==============================] - 7s 349us/step - loss: 9.7966e-04 - mean_absolute_error: 0.0221 - val_loss: 9.5059e-04 - val_mean_absolute_error: 0.0212\n",
"Epoch 47/50\n",
"18750/18750 [==============================] - 7s 349us/step - loss: 9.4433e-04 - mean_absolute_error: 0.0216 - val_loss: 8.4521e-04 - val_mean_absolute_error: 0.0213\n",
"Epoch 48/50\n",
"18750/18750 [==============================] - 7s 350us/step - loss: 9.5105e-04 - mean_absolute_error: 0.0218 - val_loss: 9.1135e-04 - val_mean_absolute_error: 0.0215\n",
"Epoch 49/50\n",
"18750/18750 [==============================] - 6s 346us/step - loss: 9.2081e-04 - mean_absolute_error: 0.0214 - val_loss: 9.3821e-04 - val_mean_absolute_error: 0.0227\n",
"Epoch 50/50\n",
"18750/18750 [==============================] - 7s 349us/step - loss: 9.3326e-04 - mean_absolute_error: 0.0216 - val_loss: 9.6320e-04 - val_mean_absolute_error: 0.0210\n",
"Epoch 1/50\n",
"18750/18750 [==============================] - 7s 347us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 2/50\n",
"18750/18750 [==============================] - 6s 341us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 3/50\n",
"18750/18750 [==============================] - 6s 347us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 4/50\n",
"18750/18750 [==============================] - 6s 341us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 5/50\n",
"18750/18750 [==============================] - 6s 341us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 6/50\n",
"18750/18750 [==============================] - 6s 340us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 7/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 8/50\n",
"18750/18750 [==============================] - 6s 340us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 9/50\n",
"18750/18750 [==============================] - 6s 339us/step - loss: 0.0492 - mean_absolute_error: 0.1807 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 10/50\n",
"18750/18750 [==============================] - 6s 339us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 11/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 12/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 13/50\n",
"18750/18750 [==============================] - 6s 341us/step - loss: 0.0489 - mean_absolute_error: 0.1800 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 14/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 15/50\n",
"18750/18750 [==============================] - 6s 338us/step - loss: 0.0491 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 16/50\n",
"18750/18750 [==============================] - 6s 338us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 17/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 18/50\n",
"18750/18750 [==============================] - 6s 341us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 19/50\n",
"18750/18750 [==============================] - 6s 340us/step - loss: 0.0489 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 20/50\n",
"18750/18750 [==============================] - 6s 338us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 21/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 22/50\n",
"18750/18750 [==============================] - 6s 341us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 23/50\n",
"18750/18750 [==============================] - 6s 340us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 24/50\n",
"18750/18750 [==============================] - 6s 341us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 25/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 26/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0488 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 27/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 28/50\n",
"18750/18750 [==============================] - 6s 341us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 29/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0488 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 30/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 31/50\n",
"18750/18750 [==============================] - 6s 340us/step - loss: 0.0488 - mean_absolute_error: 0.1799 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 32/50\n",
"18750/18750 [==============================] - 6s 343us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 33/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 34/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 35/50\n",
"18750/18750 [==============================] - 6s 341us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 36/50\n",
"18750/18750 [==============================] - 6s 339us/step - loss: 0.0492 - mean_absolute_error: 0.1807 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 37/50\n",
"18750/18750 [==============================] - 6s 340us/step - loss: 0.0491 - mean_absolute_error: 0.1806 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 38/50\n",
"18750/18750 [==============================] - 6s 341us/step - loss: 0.0491 - mean_absolute_error: 0.1806 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 39/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0490 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 40/50\n",
"18750/18750 [==============================] - 6s 340us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 41/50\n",
"18750/18750 [==============================] - 6s 341us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 42/50\n",
"18750/18750 [==============================] - 6s 340us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 43/50\n",
"18750/18750 [==============================] - 6s 340us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 44/50\n",
"18750/18750 [==============================] - 6s 338us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 45/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 46/50\n",
"18750/18750 [==============================] - 6s 345us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 47/50\n",
"18750/18750 [==============================] - 6s 342us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 48/50\n",
"18750/18750 [==============================] - 6s 344us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 49/50\n",
"18750/18750 [==============================] - 6s 340us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 50/50\n",
"18750/18750 [==============================] - 6s 338us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n"
]
}
],
"source": [
"histories=np.zeros_like(models)\n",
"for i in range(len(models)):\n",
" histories[i]=models[i].fit(X_train,y_train,\n",
" validation_data=(X_val,y_val),\n",
" batch_size=32,\n",
" epochs=50)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "4e2a356e-29e0-4531-9f8f-2195af597476",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHoCAYAAAClyIAVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACWx0lEQVR4nOzdd1xV9f/A8ddlT1FAQVERd7jAPXLnNncucmeamWm2zHI03JVWmJWZ1ldTfzlz5N6i4S5xi5IDUVCRJevz++PI1StDwAuX8X4+Hudx7/2c9b7nXrxvz2fplFIKIYQQQohCyMzUAQghhBBCmIokQkIIIYQotCQREkIIIUShJYmQEEIIIQotSYSEEEIIUWhJIiSEEEKIQksSISGEEEIUWpIICSGEEKLQkkRICCGEEIWWJEJCPLJ48WJ0Oh06nY7du3enWq+UomLFiuh0Olq0aGHUc+t0OqZMmZLl/a5cuYJOp2Px4sVG2a6gWrZsGXPnzk1VnnJd5syZk6Pnj4mJYcqUKWl+r4xh9+7d6X5vMyO737+8JKevsSi4JBES4imOjo78/PPPqcr37NnDpUuXcHR0NEFU4nmklwjllpiYGKZOnZpjP9K1a9cmICCA2rVrZ2v/gIAAXnvtNSNHlbty+hqLgksSISGe0qdPH1atWkVkZKRB+c8//0yjRo0oW7asiSIThUVMTEyWti9SpAgNGzakSJEi2Tpfw4YNKV26dLb2FSK/k0RIiKf069cPgN9//11fdv/+fVatWsXQoUPT3CciIoJRo0bh4eGBlZUV5cuXZ+LEiTx8+NBgu8jISIYPH46LiwsODg60b9+e8+fPp3nMCxcu0L9/f0qUKIG1tTUvvPAC/v7+RnqXmv3799O6dWscHR2xs7OjcePGbNy40WCbmJgY3n33Xby8vLCxscHZ2Zm6desaXJ/Lly/Tt29fSpUqhbW1NW5ubrRu3ZoTJ048M4b169fTqFEj7OzscHR0pE2bNgQEBBhsM2XKFHQ6HadPn6Zfv344OTnh5ubG0KFDuX//fobHb9GiBRs3buTq1av6qk+dTpdqu6+++govLy8cHBxo1KgRhw4dSrXNkSNH6NKlC87OztjY2ODr68vKlSszPP+VK1coXrw4AFOnTtWff/DgwQbv7dixY/Tq1YtixYpRoUIF/fn69u1LuXLlsLW1pVy5cvTr14+rV68anCOtqrHBgwfj4ODAxYsX6dixIw4ODpQpU4bx48en+l4+XTWWUk28a9cu3njjDVxdXXFxcaFHjx7cuHHDYN+HDx8yfvx43N3dsbOzo1mzZhw9epRy5crp32NGvv/+e2rVqoWDgwOOjo5UrVqVjz76yGCb0NBQRowYQenSpbGyssLLy4upU6eSmJiYqWssREYsTB2AEHlNkSJF6NWrF4sWLWLEiBGAlhSZmZnRp0+fVFUscXFxtGzZkkuXLjF16lRq1qzJvn37mD59OidOnNAnFkopunXrxsGDB5k0aRL16tXjwIEDdOjQIVUMQUFBNG7cmLJly/Lll1/i7u7Oli1bGDNmDHfu3GHy5MnP/T737NlDmzZtqFmzJj///DPW1tbMnz+fl19+md9//50+ffoA8M477/Dbb7/x+eef4+vrS3R0NP/++y/h4eH6Y3Xs2JGkpCRmzZpF2bJluXPnDgcPHuTevXsZxrBs2TL8/Pxo27Ytv//+Ow8fPmTWrFm0aNGCHTt28OKLLxps37NnT/r06cOwYcP4559/mDBhAgCLFi1K9xzz58/n9ddf59KlS6xZsybNbfz9/alatar+s/3kk0/o2LEjwcHBODk5AbBr1y7at29PgwYNWLBgAU5OTixfvpw+ffoQExOT7o9uyZIl+euvv2jfvj3Dhg3TV0Gl/HCn6NGjB3379mXkyJFER0cD2g98lSpV6Nu3L87Ozty8eZPvv/+eevXqERQUhKura4bXNyEhgS5dujBs2DDGjx/P3r17+eyzz3BycmLSpEkZ7gvw2muv0alTJ5YtW8Z///3He++9x6uvvsrOnTv12wwZMoQVK1bw/vvv06pVK4KCgujevXuqO6ppWb58OaNGjeKtt95izpw5mJmZcfHiRYKCgvTbhIaGUr9+fczMzJg0aRIVKlQgICCAzz//nCtXrvDLL79k+hoLkSYlhFBKKfXLL78oQAUGBqpdu3YpQP37779KKaXq1aunBg8erJRSqlq1aqp58+b6/RYsWKAAtXLlSoPjzZw5UwFq69atSimlNm/erAA1b948g+2++OILBajJkyfry9q1a6dKly6t7t+/b7Dt6NGjlY2NjYqIiFBKKRUcHKwA9csvv2T43tLarmHDhqpEiRLqwYMH+rLExERVvXp1Vbp0aZWcnKyUUqp69eqqW7du6R77zp07ClBz587NMIanJSUlqVKlSqkaNWqopKQkffmDBw9UiRIlVOPGjfVlkydPVoCaNWuWwTFGjRqlbGxs9LGmp1OnTsrT0zNVecp1qVGjhkpMTNSX//333wpQv//+u76satWqytfXVyUkJBgco3PnzqpkyZIG7+Fpt2/fTvUZP/3eJk2alOF7UEr7fKKiopS9vb3B9yjl+7pr1y592aBBg9L8Xnbs2FFVqVLFoOzp2FL+FkaNGmWw3axZsxSgbt68qZRS6vTp0wpQH3zwgcF2v//+uwLUoEGDMnw/o0ePVkWLFs1wmxEjRigHBwd19epVg/I5c+YoQJ0+fVoplfE1FiIjUjUmRBqaN29OhQoVWLRoEf/88w+BgYHpVovt3LkTe3t7evXqZVCecodgx44dgHZHAcDPz89gu/79+xu8jouLY8eOHXTv3h07OzsSExP1S8eOHYmLi0uz2iYroqOjOXz4ML169cLBwUFfbm5uzoABA7h27Rrnzp0DoH79+mzevJkPP/yQ3bt3Exsba3AsZ2dnKlSowOzZs/nqq684fvw4ycnJz4zh3Llz3LhxgwEDBmBm9vifIgcHB3r27MmhQ4dStZXp0qWLweuaNWsSFxdHWFhYlq/Bkzp16oS5ubnBcQF9FdTFixc5e/as/rN7+jO5efOm/nplV8+ePVOVRUVF8cEHH1CxYkUsLCywsLDAwcGB6Ohozpw588xj6nQ6Xn75ZYOymjVrpqpaS09a1xseX5c9e/YA0Lt3b4PtevXqhYXFsysc6tevz7179+jXrx/r1q3jzp07qbbZsGEDLVu2pFSpUgbXPeVOakoMQmSXJEJCpEGn0zFkyBD+97//sWDBAipXrkzTpk3T3DY8PBx3d/dU7U5KlCiBhYWFvgopPDwcCwsLXFxcDLZzd3dPdbzExES+/fZbLC0tDZaOHTsCpPmDkRV3795FKUXJkiVTrStVqpQ+DoBvvvmGDz74gLVr19KyZUucnZ3p1q0bFy5cALRrtWPHDtq1a8esWbOoXbs2xYsXZ8yYMTx48CDdGFKOn14MycnJ3L1716D86WtnbW0NkCo5y6pnHffWrVsAvPvuu6k+k1GjRgHP/5mkdR369+/Pd999x2uvvcaWLVv4+++/CQwMpHjx4pl6z3Z2dtjY2KR6b3FxcZmK6VnXJeUzdHNzM9gure95WgYMGMCiRYu4evUqPXv2pESJEjRo0IBt27bpt7l16xZ//vlnquterVo14PmvuxDSRkiIdAwePJhJkyaxYMECvvjii3S3c3Fx4fDhwyilDJKhsLAwEhMT9e04XFxcSExMJDw83OBHIjQ01OB4xYoV09+ZefPNN9M8p5eX1/O8NYoVK4aZmRk3b95MtS6lMWxK3Pb29kydOpWpU6dy69Yt/d2hl19+mbNnzwLg6empH3Lg/PnzrFy5kilTphAfH8+CBQvSjCHlGqQXg5mZGcWKFXuu92ksKddiwoQJ9OjRI81tqlSp8lzneDqRvn//Phs2bGDy5Ml8+OGH+vKHDx8SERHxXOcylpTP8NatW3h4eOjLU77nmTFkyBCGDBlCdHQ0e/fuZfLkyXTu3Jnz58/j6emJq6srNWvWTPdvMCVxFyK7JBESIh0eHh689957nD17lkGDBqW7XevWrVm5ciVr166le/fu+vJff/1Vvx6gZcuWzJo1i6VLlzJ
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"colors=['orange','green','red','blue']\n",
"legend=['max_val=1.0','max_val=0.1','max_val=0.01','max_val=0.001']\n",
"for i in range(len(models)):\n",
" plt.plot(histories[i].history['loss'],color=colors[i])\n",
" plt.yscale('log')\n",
"plt.title('Model loss on the training set \\n for different values of the range of the \\n Random Uniform initializer')\n",
"plt.xlabel('epoch')\n",
"plt.ylabel('mean squared error')\n",
"plt.legend(legend,loc='upper right')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "c7cd0ae8-fb4e-4a4a-86c1-87c5ee2638b5",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHoCAYAAAChPVAoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACWuUlEQVR4nOzdeXxM1/vA8c9kX0UWSSRIYt8ldvFV1E7tamm+9mrVr1VLq1WtpdTahbZIUVut+Zaq1r5Xia21SxWNpEWEhCAR2c7vj9sMI4tMFiPyvF+v+8rMmbs8986MeZxz7jk6pZRCCCGEEKIIMTN1AEIIIYQQT5skQEIIIYQociQBEkIIIUSRIwmQEEIIIYocSYCEEEIIUeRIAiSEEEKIIkcSICGEEEIUOZIACSGEEKLIkQRICCGEEEWOJEDiubZ06VJ0Oh06nY69e/dmeF0pRfny5dHpdDRr1ixfj63T6Zg4caLR212+fBmdTsfSpUvzZb3n1apVq5g9e3aG8vTr8umnnz79oPLI19eXAQMG6J8b8x5PnDgRnU6Xq+NmdS0h95/jZ8nBgweZOHEit2/fNnUo4hkiCZAoEhwdHfn2228zlO/bt49Lly7h6OhogqhEXmT3o/28KFmyJKGhoXTo0KFAj5PdtQwNDeXVV18t0OMXtIMHDzJp0iRJgIQBSYBEkdCrVy/WrVvHnTt3DMq//fZbGjVqRJkyZUwUmRBZs7a2pmHDhpQoUcJkMTRs2JBSpUqZ7PhCFBRJgESR0KdPHwBWr16tL4uLi2PdunUMGjQo021iY2MZNmwY3t7eWFlZUbZsWcaNG8eDBw8M1rtz5w5DhgzB1dUVBwcH2rZty59//pnpPi9cuMArr7yCu7s71tbWVKlShblz5+bTWWp+/fVXWrRogaOjI3Z2dgQGBrJp0yaDdRISEnjnnXfw8/PDxsYGFxcX6tata3B9/vrrL3r37o2XlxfW1tZ4eHjQokULTpw48cQYNm7cSKNGjbCzs8PR0ZFWrVoRGhpqsE56k83Zs2fp06cPTk5OeHh4MGjQIOLi4rLdf7Nmzdi0aRMRERH6Js7Mmn8+//xz/Pz8cHBwoFGjRhw6dCjDOseOHaNTp064uLhgY2NDQEAAISEh2R4/OTkZd3d3+vbtm+G127dvY2try6hRowBITExk9OjR+Pv74+TkhIuLC40aNeLHH3/M9hiQdRPYpk2b8Pf3x9raGj8/vyyb++bOncsLL7yAu7s79vb21KhRg5kzZ5KcnKxf50nXMrMmsDNnztC5c2ecnZ2xsbHB39+fZcuWGayzd+9edDodq1evZty4cXh5eVGsWDFatmzJ+fPnn3juN27c4LXXXqN06dJYW1tTokQJGjduzM6dOw3W27lzJy1atKBYsWLY2dnRuHFjdu3apX994sSJvPvuuwD4+fll2yQuihYLUwcgxNNQrFgxevToweLFi3n99dcBLRkyMzOjV69eGar/ExMTad68OZcuXWLSpEnUrFmT/fv3M23aNE6cOKFPKJRSdOnShYMHDzJ+/Hjq1avHgQMHaNeuXYYYzp07R2BgIGXKlOGzzz7D09OTbdu2MXz4cG7evMmECRPyfJ779u2jVatW1KxZk2+//RZra2vmzZtHx44dWb16Nb169QJg1KhRfPfdd0yZMoWAgADi4+M5c+YMMTEx+n21b9+e1NRUZs6cSZkyZbh58yYHDx58YjPCqlWrCAoKonXr1qxevZoHDx4wc+ZMmjVrxq5du/jPf/5jsH737t3p1asXgwcP5vTp04wdOxaAxYsXZ3mMefPm8dprr3Hp0iV++OGHTNeZO3culStX1r+3H330Ee3btyc8PBwnJycA9uzZQ9u2bWnQoAHBwcE4OTmxZs0aevXqRUJCgkF/nEdZWlry3//+l+DgYObOnUuxYsX0r61evZrExEQGDhwIwIMHD4iNjeWdd97B29ubpKQkdu7cSbdu3ViyZAn9+vXL9no+bteuXXTu3JlGjRqxZs0a/Xt0/fr1DOteunSJV155BT8/P6ysrDh58iSffPIJf/zxh/765uRaPur8+fMEBgbi7u7Ol19+iaurKytWrGDAgAFcv36dMWPGGKz/wQcf0LhxYxYtWsSdO3d477336NixI2FhYZibm2d5nL59+/L777/zySefULFiRW7fvs3vv/9u8BldsWIF/fr1o3PnzixbtgxLS0u++eYb2rRpw7Zt22jRogWvvvoqsbGxfPXVV6xfv56SJUsCULVq1Rxdb/EcU0I8x5YsWaIAdfToUbVnzx4FqDNnziillKpXr54aMGCAUkqpatWqqaZNm+q3Cw4OVoAKCQkx2N+MGTMUoLZv366UUmrLli0KUHPmzDFY75NPPlGAmjBhgr6sTZs2qlSpUiouLs5g3TfffFPZ2Nio2NhYpZRS4eHhClBLlizJ9twyW69hw4bK3d1d3b17V1+WkpKiqlevrkqVKqXS0tKUUkpVr15ddenSJct937x5UwFq9uzZ2cbwuNTUVOXl5aVq1KihUlNT9eV3795V7u7uKjAwUF82YcIEBaiZM2ca7GPYsGHKxsZGH2tWOnTooHx8fDKUp1+XGjVqqJSUFH35kSNHFKBWr16tL6tcubIKCAhQycnJBvt46aWXVMmSJQ3O4XGnTp1SgFqwYIFBef369VWdOnWy3C4lJUUlJyerwYMHq4CAAIPXfHx8VP/+/TOcy6PvcYMGDZSXl5e6f/++vuzOnTvKxcVFZfdPempqqkpOTlbLly9X5ubm+s+bUllfS6VUhs9x7969lbW1tYqMjDRYr127dsrOzk7dvn1bKaX037f27dsbrBcSEqIAFRoammWsSinl4OCgRowYkeXr8fHxysXFRXXs2DHDedaqVUvVr19fXzZr1iwFqPDw8GyPKYoWaQITRUbTpk0pV64cixcv5vTp0xw9ejTL5q/du3djb29Pjx49DMrTawTSq9j37NkDQFBQkMF6r7zyisHzxMREdu3aRdeuXbGzsyMlJUW/tG/fnsTExEybZ4wRHx/P4cOH6dGjBw4ODvpyc3Nz+vbtyz///KNveqhfvz5btmzh/fffZ+/evdy/f99gXy4uLpQrV45Zs2bx+eefc/z4cdLS0p4Yw/nz57l69Sp9+/bFzOzhPy8ODg50796dQ4cOkZCQYLBNp06dDJ7XrFmTxMREoqOjjb4Gj+rQoYNBDUPNmjUBiIiIAODixYv88ccf+vfu8ffk2rVr2TbV1KhRgzp16rBkyRJ9WVhYGEeOHMnwufrf//5H48aNcXBwwMLCAktLS7799lvCwsKMOqf4+HiOHj1Kt27dsLGx0Zc7OjrSsWPHDOsfP36cTp064erqirm5OZaWlvTr14/U1NQsm2mfZPfu3bRo0YLSpUsblA8YMICEhIQMTZ2Zvb/w8H3ISv369Vm6dClTpkzh0KFDBs12oHVsjo2NpX///gbvXVpaGm3btuXo0aPEx8fn6hxF0SAJkCgydDodAwcOZMWKFQQHB1OxYkWaNGmS6boxMTF4enpm6Ffi7u6OhYWFvho+JiYGCwsLXF1dDdbz9PTMsL+UlBS++uorLC0tDZb27dsDcPPmzTyd361bt1BK6av4H+Xl5aWPA+DLL7/kvffeY8OGDTRv3hwXFxe6dOnChQsXAO1a7dq1izZt2jBz5kxq165NiRIlGD58OHfv3s0yhvT9ZxVDWloat27dMih//NpZW1sDZEjKjPWk/aY3Gb3zzjsZ3pNhw4YBT35PBg0aRGhoKH/88QcAS5YswdraWt/nDGD9+vX07NkTb29vVqxYQWhoqD75TkxMNOqcbt26RVpaWobPF2T8zEVGRtKkSROuXLnCnDlz2L9/P0ePHtX3Ocvt9Y2JicnRZyxdbt/ftWvX0r9/fxYtWkSjRo1wcXGhX79+REVFAQ/fvx49emR4/2bMmIFSitjY2FydoygapA+QKFIGDBjA+PHjCQ4O5pNPPslyPVdXVw4fPoxSyiAJio6OJiUlBTc3N/16KSkpxMTEGPxDn/6PdDpnZ2d9Tcz//d//ZXpMPz+/vJwazs7OmJmZce3atQyvXb16FUAft72
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"colors=['orange','green','red','blue']\n",
"legend=['max_val=1.0','max_val=0.1','max_val=0.01','max_val=0.001']\n",
"for i in range(len(models)):\n",
" plt.plot(histories[i].history['val_loss'],color=colors[i])\n",
"plt.title('Model loss on the validation set \\n for different values of the range of \\n the Random Uniform initializer')\n",
"plt.xlabel('epoch')\n",
"plt.ylabel('mean squared error')\n",
"plt.legend(legend,loc='upper right')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "4e65e4c7-c4dc-4e53-8bac-a4b4a20d32a2",
"metadata": {},
"outputs": [],
"source": [
"#Now choose the most appropriate initializer among: Random Normal (with standard deviation as selected above), \n",
"#Random Uniform (with range selected above), Glorot Normal, Glorot Uniform, He Normal, He Uniform, \n",
"#mixed (Glorot Uniform for sigmoid activation, He Uniform for ReLU activation)\n",
"my_initializers=[keras.initializers.RandomNormal(mean=0, stddev=0.1), keras.initializers.RandomUniform(minval=-1, maxval=1), keras.initializers.GlorotNormal, keras.initializers.GlorotUniform, keras.initializers.HeNormal, keras.initializers.HeUniform]\n",
"models=np.zeros_like(my_initializers)\n",
"for i in range(len(models)):\n",
" models[i]=keras.models.Sequential()\n",
" models[i].add(keras.layers.Dense(units=32, activation='relu', input_dim=X_train.shape[1], kernel_initializer=my_initializers[i]))\n",
" models[i].add(keras.layers.Dense(units=32, activation='sigmoid', kernel_initializer=my_initializers[i]))\n",
" models[i].add(keras.layers.Dense(units=64, activation='sigmoid', kernel_initializer=my_initializers[i]))\n",
" models[i].add(keras.layers.Dense(units=1, activation='relu', kernel_initializer=my_initializers[i]))\n",
" models[i].compile(optimizer='adam',\n",
" loss='mean_squared_error',\n",
" metrics=['mean_absolute_error'])"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "9e2af9a5-fa82-4ed3-9143-8fc6513b501d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0150 - mean_absolute_error: 0.0996 - val_loss: 0.0106 - val_mean_absolute_error: 0.0802\n",
"Epoch 2/100\n",
"18750/18750 [==============================] - 7s 371us/step - loss: 0.0101 - mean_absolute_error: 0.0772 - val_loss: 0.0076 - val_mean_absolute_error: 0.0649\n",
"Epoch 3/100\n",
"18750/18750 [==============================] - 7s 365us/step - loss: 0.0077 - mean_absolute_error: 0.0655 - val_loss: 0.0063 - val_mean_absolute_error: 0.0588\n",
"Epoch 4/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0062 - mean_absolute_error: 0.0573 - val_loss: 0.0047 - val_mean_absolute_error: 0.0485\n",
"Epoch 5/100\n",
"18750/18750 [==============================] - 7s 367us/step - loss: 0.0049 - mean_absolute_error: 0.0506 - val_loss: 0.0038 - val_mean_absolute_error: 0.0442\n",
"Epoch 6/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0040 - mean_absolute_error: 0.0454 - val_loss: 0.0036 - val_mean_absolute_error: 0.0424\n",
"Epoch 7/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0035 - mean_absolute_error: 0.0424 - val_loss: 0.0035 - val_mean_absolute_error: 0.0429\n",
"Epoch 8/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0031 - mean_absolute_error: 0.0396 - val_loss: 0.0028 - val_mean_absolute_error: 0.0390\n",
"Epoch 9/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0027 - mean_absolute_error: 0.0369 - val_loss: 0.0021 - val_mean_absolute_error: 0.0313\n",
"Epoch 10/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0024 - mean_absolute_error: 0.0349 - val_loss: 0.0019 - val_mean_absolute_error: 0.0304\n",
"Epoch 11/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0022 - mean_absolute_error: 0.0332 - val_loss: 0.0025 - val_mean_absolute_error: 0.0350\n",
"Epoch 12/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0020 - mean_absolute_error: 0.0319 - val_loss: 0.0017 - val_mean_absolute_error: 0.0289\n",
"Epoch 13/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0019 - mean_absolute_error: 0.0303 - val_loss: 0.0016 - val_mean_absolute_error: 0.0278\n",
"Epoch 14/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0017 - mean_absolute_error: 0.0289 - val_loss: 0.0015 - val_mean_absolute_error: 0.0270\n",
"Epoch 15/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0015 - mean_absolute_error: 0.0276 - val_loss: 0.0017 - val_mean_absolute_error: 0.0299\n",
"Epoch 16/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0014 - mean_absolute_error: 0.0264 - val_loss: 0.0013 - val_mean_absolute_error: 0.0262\n",
"Epoch 17/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0013 - mean_absolute_error: 0.0255 - val_loss: 0.0012 - val_mean_absolute_error: 0.0253\n",
"Epoch 18/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 0.0012 - mean_absolute_error: 0.0247 - val_loss: 0.0011 - val_mean_absolute_error: 0.0245\n",
"Epoch 19/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 0.0011 - mean_absolute_error: 0.0241 - val_loss: 0.0011 - val_mean_absolute_error: 0.0248\n",
"Epoch 20/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 0.0011 - mean_absolute_error: 0.0236 - val_loss: 0.0011 - val_mean_absolute_error: 0.0230\n",
"Epoch 21/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 0.0010 - mean_absolute_error: 0.0229 - val_loss: 6.1882e-04 - val_mean_absolute_error: 0.0177\n",
"Epoch 22/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 9.8046e-04 - mean_absolute_error: 0.0224 - val_loss: 7.2949e-04 - val_mean_absolute_error: 0.0188\n",
"Epoch 23/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 9.3654e-04 - mean_absolute_error: 0.0219 - val_loss: 8.9770e-04 - val_mean_absolute_error: 0.0230\n",
"Epoch 24/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 9.3012e-04 - mean_absolute_error: 0.0218 - val_loss: 7.3034e-04 - val_mean_absolute_error: 0.0194\n",
"Epoch 25/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 8.4976e-04 - mean_absolute_error: 0.0209 - val_loss: 0.0012 - val_mean_absolute_error: 0.0244\n",
"Epoch 26/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 8.5389e-04 - mean_absolute_error: 0.0209 - val_loss: 6.8117e-04 - val_mean_absolute_error: 0.0189\n",
"Epoch 27/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 8.1240e-04 - mean_absolute_error: 0.0205 - val_loss: 6.8420e-04 - val_mean_absolute_error: 0.0193\n",
"Epoch 28/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 7.8549e-04 - mean_absolute_error: 0.0201 - val_loss: 6.0740e-04 - val_mean_absolute_error: 0.0181\n",
"Epoch 29/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 7.7322e-04 - mean_absolute_error: 0.0200 - val_loss: 8.3531e-04 - val_mean_absolute_error: 0.0205\n",
"Epoch 30/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 7.8297e-04 - mean_absolute_error: 0.0199 - val_loss: 8.0232e-04 - val_mean_absolute_error: 0.0216\n",
"Epoch 31/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 7.1489e-04 - mean_absolute_error: 0.0193 - val_loss: 6.6555e-04 - val_mean_absolute_error: 0.0185\n",
"Epoch 32/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 7.1104e-04 - mean_absolute_error: 0.0192 - val_loss: 0.0010 - val_mean_absolute_error: 0.0246\n",
"Epoch 33/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 7.0358e-04 - mean_absolute_error: 0.0191 - val_loss: 4.5792e-04 - val_mean_absolute_error: 0.0155\n",
"Epoch 34/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 6.8518e-04 - mean_absolute_error: 0.0189 - val_loss: 5.4363e-04 - val_mean_absolute_error: 0.0165\n",
"Epoch 35/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 7.1538e-04 - mean_absolute_error: 0.0190 - val_loss: 0.0023 - val_mean_absolute_error: 0.0333\n",
"Epoch 36/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 8.9945e-04 - mean_absolute_error: 0.0215 - val_loss: 8.9341e-04 - val_mean_absolute_error: 0.0223\n",
"Epoch 37/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 7.5983e-04 - mean_absolute_error: 0.0199 - val_loss: 7.1836e-04 - val_mean_absolute_error: 0.0197\n",
"Epoch 38/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 7.1494e-04 - mean_absolute_error: 0.0193 - val_loss: 0.0011 - val_mean_absolute_error: 0.0246\n",
"Epoch 39/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 6.8852e-04 - mean_absolute_error: 0.0189 - val_loss: 6.4331e-04 - val_mean_absolute_error: 0.0180\n",
"Epoch 40/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 6.7312e-04 - mean_absolute_error: 0.0187 - val_loss: 7.5726e-04 - val_mean_absolute_error: 0.0206\n",
"Epoch 41/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 6.5881e-04 - mean_absolute_error: 0.0184 - val_loss: 5.8433e-04 - val_mean_absolute_error: 0.0185\n",
"Epoch 42/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 6.3876e-04 - mean_absolute_error: 0.0182 - val_loss: 5.7359e-04 - val_mean_absolute_error: 0.0176\n",
"Epoch 43/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 6.3324e-04 - mean_absolute_error: 0.0181 - val_loss: 4.5158e-04 - val_mean_absolute_error: 0.0156\n",
"Epoch 44/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 6.0175e-04 - mean_absolute_error: 0.0177 - val_loss: 5.5036e-04 - val_mean_absolute_error: 0.0172\n",
"Epoch 45/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 5.8963e-04 - mean_absolute_error: 0.0176 - val_loss: 5.6257e-04 - val_mean_absolute_error: 0.0172\n",
"Epoch 46/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 6.0319e-04 - mean_absolute_error: 0.0177 - val_loss: 4.0057e-04 - val_mean_absolute_error: 0.0146\n",
"Epoch 47/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 5.9196e-04 - mean_absolute_error: 0.0176 - val_loss: 6.5019e-04 - val_mean_absolute_error: 0.0191\n",
"Epoch 48/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 5.8436e-04 - mean_absolute_error: 0.0173 - val_loss: 4.2232e-04 - val_mean_absolute_error: 0.0149\n",
"Epoch 49/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 5.6281e-04 - mean_absolute_error: 0.0171 - val_loss: 6.6305e-04 - val_mean_absolute_error: 0.0189\n",
"Epoch 50/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 5.6831e-04 - mean_absolute_error: 0.0173 - val_loss: 5.7010e-04 - val_mean_absolute_error: 0.0168\n",
"Epoch 51/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 5.4060e-04 - mean_absolute_error: 0.0169 - val_loss: 3.6157e-04 - val_mean_absolute_error: 0.0140\n",
"Epoch 52/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 5.4299e-04 - mean_absolute_error: 0.0170 - val_loss: 5.5452e-04 - val_mean_absolute_error: 0.0178\n",
"Epoch 53/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 5.3025e-04 - mean_absolute_error: 0.0167 - val_loss: 4.0140e-04 - val_mean_absolute_error: 0.0147\n",
"Epoch 54/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 5.3510e-04 - mean_absolute_error: 0.0168 - val_loss: 6.9715e-04 - val_mean_absolute_error: 0.0209\n",
"Epoch 55/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 5.2140e-04 - mean_absolute_error: 0.0166 - val_loss: 5.1850e-04 - val_mean_absolute_error: 0.0165\n",
"Epoch 56/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 5.1881e-04 - mean_absolute_error: 0.0165 - val_loss: 4.1124e-04 - val_mean_absolute_error: 0.0149\n",
"Epoch 57/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 5.2783e-04 - mean_absolute_error: 0.0166 - val_loss: 4.3714e-04 - val_mean_absolute_error: 0.0154\n",
"Epoch 58/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 5.0825e-04 - mean_absolute_error: 0.0164 - val_loss: 3.4175e-04 - val_mean_absolute_error: 0.0133\n",
"Epoch 59/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 4.9845e-04 - mean_absolute_error: 0.0162 - val_loss: 5.4887e-04 - val_mean_absolute_error: 0.0169\n",
"Epoch 60/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 4.9524e-04 - mean_absolute_error: 0.0161 - val_loss: 4.3515e-04 - val_mean_absolute_error: 0.0158\n",
"Epoch 61/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 4.9686e-04 - mean_absolute_error: 0.0162 - val_loss: 7.6235e-04 - val_mean_absolute_error: 0.0200\n",
"Epoch 62/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 4.8167e-04 - mean_absolute_error: 0.0160 - val_loss: 9.1578e-04 - val_mean_absolute_error: 0.0201\n",
"Epoch 63/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 4.8026e-04 - mean_absolute_error: 0.0159 - val_loss: 3.3618e-04 - val_mean_absolute_error: 0.0132\n",
"Epoch 64/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 4.7928e-04 - mean_absolute_error: 0.0159 - val_loss: 3.5298e-04 - val_mean_absolute_error: 0.0135\n",
"Epoch 65/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 4.7191e-04 - mean_absolute_error: 0.0158 - val_loss: 5.6708e-04 - val_mean_absolute_error: 0.0180\n",
"Epoch 66/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 4.7980e-04 - mean_absolute_error: 0.0158 - val_loss: 7.5094e-04 - val_mean_absolute_error: 0.0205\n",
"Epoch 67/100\n",
"18750/18750 [==============================] - 7s 365us/step - loss: 4.8079e-04 - mean_absolute_error: 0.0158 - val_loss: 4.5502e-04 - val_mean_absolute_error: 0.0156\n",
"Epoch 68/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 4.5753e-04 - mean_absolute_error: 0.0156 - val_loss: 4.1649e-04 - val_mean_absolute_error: 0.0149\n",
"Epoch 69/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 4.4907e-04 - mean_absolute_error: 0.0155 - val_loss: 5.5033e-04 - val_mean_absolute_error: 0.0170\n",
"Epoch 70/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 4.5128e-04 - mean_absolute_error: 0.0155 - val_loss: 3.6042e-04 - val_mean_absolute_error: 0.0139\n",
"Epoch 71/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 4.4466e-04 - mean_absolute_error: 0.0153 - val_loss: 3.8639e-04 - val_mean_absolute_error: 0.0143\n",
"Epoch 72/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 4.5375e-04 - mean_absolute_error: 0.0154 - val_loss: 3.4324e-04 - val_mean_absolute_error: 0.0135\n",
"Epoch 73/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 4.4767e-04 - mean_absolute_error: 0.0154 - val_loss: 6.6995e-04 - val_mean_absolute_error: 0.0198\n",
"Epoch 74/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 4.5291e-04 - mean_absolute_error: 0.0155 - val_loss: 2.7605e-04 - val_mean_absolute_error: 0.0119\n",
"Epoch 75/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 4.7022e-04 - mean_absolute_error: 0.0155 - val_loss: 3.1130e-04 - val_mean_absolute_error: 0.0129\n",
"Epoch 76/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 4.3973e-04 - mean_absolute_error: 0.0152 - val_loss: 3.2427e-04 - val_mean_absolute_error: 0.0133\n",
"Epoch 77/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 4.3325e-04 - mean_absolute_error: 0.0151 - val_loss: 3.3348e-04 - val_mean_absolute_error: 0.0134\n",
"Epoch 78/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 4.1825e-04 - mean_absolute_error: 0.0149 - val_loss: 5.3084e-04 - val_mean_absolute_error: 0.0179\n",
"Epoch 79/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 4.2844e-04 - mean_absolute_error: 0.0150 - val_loss: 3.4043e-04 - val_mean_absolute_error: 0.0136\n",
"Epoch 80/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 4.3344e-04 - mean_absolute_error: 0.0151 - val_loss: 3.4693e-04 - val_mean_absolute_error: 0.0139\n",
"Epoch 81/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 4.2056e-04 - mean_absolute_error: 0.0149 - val_loss: 7.4632e-04 - val_mean_absolute_error: 0.0196\n",
"Epoch 82/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 4.1617e-04 - mean_absolute_error: 0.0149 - val_loss: 4.3403e-04 - val_mean_absolute_error: 0.0154\n",
"Epoch 83/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 4.2341e-04 - mean_absolute_error: 0.0150 - val_loss: 3.4780e-04 - val_mean_absolute_error: 0.0135\n",
"Epoch 84/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 4.1225e-04 - mean_absolute_error: 0.0148 - val_loss: 2.6244e-04 - val_mean_absolute_error: 0.0117\n",
"Epoch 85/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 4.2347e-04 - mean_absolute_error: 0.0150 - val_loss: 3.1248e-04 - val_mean_absolute_error: 0.0130\n",
"Epoch 86/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 4.0531e-04 - mean_absolute_error: 0.0147 - val_loss: 3.7431e-04 - val_mean_absolute_error: 0.0140\n",
"Epoch 87/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 4.1065e-04 - mean_absolute_error: 0.0146 - val_loss: 3.2736e-04 - val_mean_absolute_error: 0.0134\n",
"Epoch 88/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 4.0657e-04 - mean_absolute_error: 0.0147 - val_loss: 3.3716e-04 - val_mean_absolute_error: 0.0134\n",
"Epoch 89/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 3.9811e-04 - mean_absolute_error: 0.0146 - val_loss: 3.3978e-04 - val_mean_absolute_error: 0.0135\n",
"Epoch 90/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 3.9004e-04 - mean_absolute_error: 0.0145 - val_loss: 4.2286e-04 - val_mean_absolute_error: 0.0150\n",
"Epoch 91/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 3.9751e-04 - mean_absolute_error: 0.0146 - val_loss: 4.2561e-04 - val_mean_absolute_error: 0.0148\n",
"Epoch 92/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 4.0213e-04 - mean_absolute_error: 0.0146 - val_loss: 2.8386e-04 - val_mean_absolute_error: 0.0127\n",
"Epoch 93/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 3.9579e-04 - mean_absolute_error: 0.0145 - val_loss: 3.1730e-04 - val_mean_absolute_error: 0.0133\n",
"Epoch 94/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 3.8603e-04 - mean_absolute_error: 0.0144 - val_loss: 5.4730e-04 - val_mean_absolute_error: 0.0180\n",
"Epoch 95/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 3.8787e-04 - mean_absolute_error: 0.0144 - val_loss: 3.3596e-04 - val_mean_absolute_error: 0.0134\n",
"Epoch 96/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 3.8487e-04 - mean_absolute_error: 0.0143 - val_loss: 3.6563e-04 - val_mean_absolute_error: 0.0146\n",
"Epoch 97/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 4.0596e-04 - mean_absolute_error: 0.0146 - val_loss: 3.0084e-04 - val_mean_absolute_error: 0.0127\n",
"Epoch 98/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 3.9142e-04 - mean_absolute_error: 0.0144 - val_loss: 5.0896e-04 - val_mean_absolute_error: 0.0171\n",
"Epoch 99/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 3.7833e-04 - mean_absolute_error: 0.0143 - val_loss: 3.2704e-04 - val_mean_absolute_error: 0.0136\n",
"Epoch 100/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 3.8635e-04 - mean_absolute_error: 0.0143 - val_loss: 2.7104e-04 - val_mean_absolute_error: 0.0119\n",
"Epoch 1/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 0.1270 - mean_absolute_error: 0.1602 - val_loss: 0.0169 - val_mean_absolute_error: 0.1058\n",
"Epoch 2/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 0.0170 - mean_absolute_error: 0.1068 - val_loss: 0.0174 - val_mean_absolute_error: 0.1100\n",
"Epoch 3/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 0.0168 - mean_absolute_error: 0.1062 - val_loss: 0.0157 - val_mean_absolute_error: 0.1032\n",
"Epoch 4/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 0.0160 - mean_absolute_error: 0.1041 - val_loss: 0.0164 - val_mean_absolute_error: 0.1033\n",
"Epoch 5/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 0.0159 - mean_absolute_error: 0.1039 - val_loss: 0.0157 - val_mean_absolute_error: 0.1039\n",
"Epoch 6/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 0.0158 - mean_absolute_error: 0.1035 - val_loss: 0.0159 - val_mean_absolute_error: 0.1032\n",
"Epoch 7/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0157 - mean_absolute_error: 0.1034 - val_loss: 0.0155 - val_mean_absolute_error: 0.1033\n",
"Epoch 8/100\n",
"18750/18750 [==============================] - 7s 365us/step - loss: 0.0157 - mean_absolute_error: 0.1031 - val_loss: 0.0157 - val_mean_absolute_error: 0.1023\n",
"Epoch 9/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0156 - mean_absolute_error: 0.1029 - val_loss: 0.0154 - val_mean_absolute_error: 0.1016\n",
"Epoch 10/100\n",
"18750/18750 [==============================] - 7s 366us/step - loss: 0.0156 - mean_absolute_error: 0.1026 - val_loss: 0.0154 - val_mean_absolute_error: 0.1012\n",
"Epoch 11/100\n",
"18750/18750 [==============================] - 7s 367us/step - loss: 0.0155 - mean_absolute_error: 0.1023 - val_loss: 0.0160 - val_mean_absolute_error: 0.1040\n",
"Epoch 12/100\n",
"18750/18750 [==============================] - 7s 367us/step - loss: 0.0157 - mean_absolute_error: 0.1030 - val_loss: 0.0159 - val_mean_absolute_error: 0.1053\n",
"Epoch 13/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 0.0154 - mean_absolute_error: 0.1019 - val_loss: 0.0159 - val_mean_absolute_error: 0.1049\n",
"Epoch 14/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 0.0152 - mean_absolute_error: 0.1009 - val_loss: 0.0144 - val_mean_absolute_error: 0.0973\n",
"Epoch 15/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0147 - mean_absolute_error: 0.0981 - val_loss: 0.0129 - val_mean_absolute_error: 0.0897\n",
"Epoch 16/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0129 - mean_absolute_error: 0.0885 - val_loss: 0.0125 - val_mean_absolute_error: 0.0879\n",
"Epoch 17/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 0.0124 - mean_absolute_error: 0.0861 - val_loss: 0.0162 - val_mean_absolute_error: 0.1015\n",
"Epoch 18/100\n",
"18750/18750 [==============================] - 7s 365us/step - loss: 0.0122 - mean_absolute_error: 0.0853 - val_loss: 0.0120 - val_mean_absolute_error: 0.0855\n",
"Epoch 19/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0121 - mean_absolute_error: 0.0845 - val_loss: 0.0117 - val_mean_absolute_error: 0.0837\n",
"Epoch 20/100\n",
"18750/18750 [==============================] - 7s 365us/step - loss: 0.0119 - mean_absolute_error: 0.0839 - val_loss: 0.0118 - val_mean_absolute_error: 0.0841\n",
"Epoch 21/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 0.0113 - mean_absolute_error: 0.0818 - val_loss: 0.0117 - val_mean_absolute_error: 0.0847\n",
"Epoch 22/100\n",
"18750/18750 [==============================] - 7s 366us/step - loss: 0.0108 - mean_absolute_error: 0.0792 - val_loss: 0.0109 - val_mean_absolute_error: 0.0796\n",
"Epoch 23/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 0.0105 - mean_absolute_error: 0.0779 - val_loss: 0.0104 - val_mean_absolute_error: 0.0763\n",
"Epoch 24/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 0.0102 - mean_absolute_error: 0.0770 - val_loss: 0.0102 - val_mean_absolute_error: 0.0763\n",
"Epoch 25/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0100 - mean_absolute_error: 0.0761 - val_loss: 0.0101 - val_mean_absolute_error: 0.0752\n",
"Epoch 26/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 0.0098 - mean_absolute_error: 0.0751 - val_loss: 0.0095 - val_mean_absolute_error: 0.0733\n",
"Epoch 27/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 0.0096 - mean_absolute_error: 0.0742 - val_loss: 0.0091 - val_mean_absolute_error: 0.0732\n",
"Epoch 28/100\n",
"18750/18750 [==============================] - 7s 366us/step - loss: 0.0094 - mean_absolute_error: 0.0734 - val_loss: 0.0095 - val_mean_absolute_error: 0.0729\n",
"Epoch 29/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0091 - mean_absolute_error: 0.0723 - val_loss: 0.0099 - val_mean_absolute_error: 0.0780\n",
"Epoch 30/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0088 - mean_absolute_error: 0.0708 - val_loss: 0.0084 - val_mean_absolute_error: 0.0701\n",
"Epoch 31/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0084 - mean_absolute_error: 0.0693 - val_loss: 0.0079 - val_mean_absolute_error: 0.0660\n",
"Epoch 32/100\n",
"18750/18750 [==============================] - 7s 367us/step - loss: 0.0080 - mean_absolute_error: 0.0671 - val_loss: 0.0079 - val_mean_absolute_error: 0.0660\n",
"Epoch 33/100\n",
"18750/18750 [==============================] - 7s 368us/step - loss: 0.0077 - mean_absolute_error: 0.0660 - val_loss: 0.0086 - val_mean_absolute_error: 0.0701\n",
"Epoch 34/100\n",
"18750/18750 [==============================] - 7s 365us/step - loss: 0.0075 - mean_absolute_error: 0.0650 - val_loss: 0.0068 - val_mean_absolute_error: 0.0599\n",
"Epoch 35/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 0.0072 - mean_absolute_error: 0.0631 - val_loss: 0.0075 - val_mean_absolute_error: 0.0654\n",
"Epoch 36/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 0.0067 - mean_absolute_error: 0.0608 - val_loss: 0.0064 - val_mean_absolute_error: 0.0584\n",
"Epoch 37/100\n",
"18750/18750 [==============================] - 7s 366us/step - loss: 0.0064 - mean_absolute_error: 0.0589 - val_loss: 0.0067 - val_mean_absolute_error: 0.0636\n",
"Epoch 38/100\n",
"18750/18750 [==============================] - 7s 365us/step - loss: 0.0061 - mean_absolute_error: 0.0576 - val_loss: 0.0059 - val_mean_absolute_error: 0.0560\n",
"Epoch 39/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 0.0058 - mean_absolute_error: 0.0559 - val_loss: 0.0050 - val_mean_absolute_error: 0.0517\n",
"Epoch 40/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 0.0054 - mean_absolute_error: 0.0542 - val_loss: 0.0051 - val_mean_absolute_error: 0.0528\n",
"Epoch 41/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 0.0051 - mean_absolute_error: 0.0522 - val_loss: 0.0045 - val_mean_absolute_error: 0.0488\n",
"Epoch 42/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 0.0047 - mean_absolute_error: 0.0498 - val_loss: 0.0040 - val_mean_absolute_error: 0.0448\n",
"Epoch 43/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 0.0043 - mean_absolute_error: 0.0479 - val_loss: 0.0044 - val_mean_absolute_error: 0.0499\n",
"Epoch 44/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 0.0036 - mean_absolute_error: 0.0439 - val_loss: 0.0030 - val_mean_absolute_error: 0.0388\n",
"Epoch 45/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 0.0031 - mean_absolute_error: 0.0402 - val_loss: 0.0030 - val_mean_absolute_error: 0.0386\n",
"Epoch 46/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0028 - mean_absolute_error: 0.0380 - val_loss: 0.0023 - val_mean_absolute_error: 0.0333\n",
"Epoch 47/100\n",
"18750/18750 [==============================] - 7s 366us/step - loss: 0.0026 - mean_absolute_error: 0.0360 - val_loss: 0.0023 - val_mean_absolute_error: 0.0348\n",
"Epoch 48/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0024 - mean_absolute_error: 0.0349 - val_loss: 0.0022 - val_mean_absolute_error: 0.0334\n",
"Epoch 49/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0023 - mean_absolute_error: 0.0338 - val_loss: 0.0021 - val_mean_absolute_error: 0.0318\n",
"Epoch 50/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0021 - mean_absolute_error: 0.0327 - val_loss: 0.0019 - val_mean_absolute_error: 0.0305\n",
"Epoch 51/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 0.0020 - mean_absolute_error: 0.0318 - val_loss: 0.0020 - val_mean_absolute_error: 0.0314\n",
"Epoch 52/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0018 - mean_absolute_error: 0.0307 - val_loss: 0.0018 - val_mean_absolute_error: 0.0305\n",
"Epoch 53/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 0.0017 - mean_absolute_error: 0.0299 - val_loss: 0.0014 - val_mean_absolute_error: 0.0262\n",
"Epoch 54/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 0.0016 - mean_absolute_error: 0.0288 - val_loss: 0.0015 - val_mean_absolute_error: 0.0276\n",
"Epoch 55/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 0.0015 - mean_absolute_error: 0.0274 - val_loss: 0.0015 - val_mean_absolute_error: 0.0270\n",
"Epoch 56/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 0.0013 - mean_absolute_error: 0.0263 - val_loss: 0.0013 - val_mean_absolute_error: 0.0261\n",
"Epoch 57/100\n",
"18750/18750 [==============================] - 7s 367us/step - loss: 0.0013 - mean_absolute_error: 0.0255 - val_loss: 0.0012 - val_mean_absolute_error: 0.0238\n",
"Epoch 58/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 0.0012 - mean_absolute_error: 0.0245 - val_loss: 0.0011 - val_mean_absolute_error: 0.0240\n",
"Epoch 59/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 0.0011 - mean_absolute_error: 0.0236 - val_loss: 0.0017 - val_mean_absolute_error: 0.0306\n",
"Epoch 60/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 0.0010 - mean_absolute_error: 0.0231 - val_loss: 0.0011 - val_mean_absolute_error: 0.0248\n",
"Epoch 61/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 9.5867e-04 - mean_absolute_error: 0.0224 - val_loss: 0.0011 - val_mean_absolute_error: 0.0248\n",
"Epoch 62/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 8.9303e-04 - mean_absolute_error: 0.0217 - val_loss: 7.3453e-04 - val_mean_absolute_error: 0.0198\n",
"Epoch 63/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 8.3587e-04 - mean_absolute_error: 0.0210 - val_loss: 6.4563e-04 - val_mean_absolute_error: 0.0184\n",
"Epoch 64/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 7.7967e-04 - mean_absolute_error: 0.0203 - val_loss: 7.6727e-04 - val_mean_absolute_error: 0.0207\n",
"Epoch 65/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 7.4728e-04 - mean_absolute_error: 0.0199 - val_loss: 6.2977e-04 - val_mean_absolute_error: 0.0187\n",
"Epoch 66/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 7.3397e-04 - mean_absolute_error: 0.0197 - val_loss: 9.9324e-04 - val_mean_absolute_error: 0.0237\n",
"Epoch 67/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 7.0124e-04 - mean_absolute_error: 0.0193 - val_loss: 5.8110e-04 - val_mean_absolute_error: 0.0175\n",
"Epoch 68/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 6.7863e-04 - mean_absolute_error: 0.0190 - val_loss: 5.2384e-04 - val_mean_absolute_error: 0.0167\n",
"Epoch 69/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 6.6019e-04 - mean_absolute_error: 0.0187 - val_loss: 7.8950e-04 - val_mean_absolute_error: 0.0202\n",
"Epoch 70/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 6.3529e-04 - mean_absolute_error: 0.0184 - val_loss: 7.3229e-04 - val_mean_absolute_error: 0.0203\n",
"Epoch 71/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 6.3725e-04 - mean_absolute_error: 0.0184 - val_loss: 9.7328e-04 - val_mean_absolute_error: 0.0220\n",
"Epoch 72/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 6.2533e-04 - mean_absolute_error: 0.0182 - val_loss: 4.3794e-04 - val_mean_absolute_error: 0.0153\n",
"Epoch 73/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 6.0310e-04 - mean_absolute_error: 0.0179 - val_loss: 5.5161e-04 - val_mean_absolute_error: 0.0171\n",
"Epoch 74/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 6.0297e-04 - mean_absolute_error: 0.0179 - val_loss: 6.9279e-04 - val_mean_absolute_error: 0.0199\n",
"Epoch 75/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 5.8374e-04 - mean_absolute_error: 0.0176 - val_loss: 7.9075e-04 - val_mean_absolute_error: 0.0200\n",
"Epoch 76/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 5.8004e-04 - mean_absolute_error: 0.0176 - val_loss: 5.0505e-04 - val_mean_absolute_error: 0.0163\n",
"Epoch 77/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 5.6256e-04 - mean_absolute_error: 0.0173 - val_loss: 5.4434e-04 - val_mean_absolute_error: 0.0174\n",
"Epoch 78/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 5.7255e-04 - mean_absolute_error: 0.0174 - val_loss: 7.4152e-04 - val_mean_absolute_error: 0.0207\n",
"Epoch 79/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 5.5975e-04 - mean_absolute_error: 0.0173 - val_loss: 5.0125e-04 - val_mean_absolute_error: 0.0171\n",
"Epoch 80/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 5.4982e-04 - mean_absolute_error: 0.0170 - val_loss: 4.4738e-04 - val_mean_absolute_error: 0.0152\n",
"Epoch 81/100\n",
"18750/18750 [==============================] - 7s 366us/step - loss: 5.6277e-04 - mean_absolute_error: 0.0173 - val_loss: 3.6504e-04 - val_mean_absolute_error: 0.0138\n",
"Epoch 82/100\n",
"18750/18750 [==============================] - 7s 365us/step - loss: 5.5491e-04 - mean_absolute_error: 0.0171 - val_loss: 8.6827e-04 - val_mean_absolute_error: 0.0235\n",
"Epoch 83/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 5.4222e-04 - mean_absolute_error: 0.0170 - val_loss: 6.4187e-04 - val_mean_absolute_error: 0.0188\n",
"Epoch 84/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 5.4358e-04 - mean_absolute_error: 0.0169 - val_loss: 4.7220e-04 - val_mean_absolute_error: 0.0165\n",
"Epoch 85/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 5.2508e-04 - mean_absolute_error: 0.0167 - val_loss: 5.9247e-04 - val_mean_absolute_error: 0.0171\n",
"Epoch 86/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 5.4289e-04 - mean_absolute_error: 0.0169 - val_loss: 9.7191e-04 - val_mean_absolute_error: 0.0243\n",
"Epoch 87/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 5.1589e-04 - mean_absolute_error: 0.0166 - val_loss: 4.6512e-04 - val_mean_absolute_error: 0.0158\n",
"Epoch 88/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 5.2248e-04 - mean_absolute_error: 0.0165 - val_loss: 8.3073e-04 - val_mean_absolute_error: 0.0231\n",
"Epoch 89/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 5.0159e-04 - mean_absolute_error: 0.0163 - val_loss: 4.1243e-04 - val_mean_absolute_error: 0.0144\n",
"Epoch 90/100\n",
"18750/18750 [==============================] - 7s 365us/step - loss: 5.0463e-04 - mean_absolute_error: 0.0164 - val_loss: 4.2216e-04 - val_mean_absolute_error: 0.0150\n",
"Epoch 91/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 5.0054e-04 - mean_absolute_error: 0.0163 - val_loss: 3.7637e-04 - val_mean_absolute_error: 0.0134\n",
"Epoch 92/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 4.9631e-04 - mean_absolute_error: 0.0162 - val_loss: 3.1038e-04 - val_mean_absolute_error: 0.0126\n",
"Epoch 93/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 4.9139e-04 - mean_absolute_error: 0.0160 - val_loss: 0.0011 - val_mean_absolute_error: 0.0246\n",
"Epoch 94/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 4.7813e-04 - mean_absolute_error: 0.0159 - val_loss: 4.2250e-04 - val_mean_absolute_error: 0.0147\n",
"Epoch 95/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 4.7804e-04 - mean_absolute_error: 0.0159 - val_loss: 3.2062e-04 - val_mean_absolute_error: 0.0129\n",
"Epoch 96/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 4.5880e-04 - mean_absolute_error: 0.0156 - val_loss: 4.4660e-04 - val_mean_absolute_error: 0.0159\n",
"Epoch 97/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 5.1498e-04 - mean_absolute_error: 0.0159 - val_loss: 6.7684e-04 - val_mean_absolute_error: 0.0198\n",
"Epoch 98/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 4.4076e-04 - mean_absolute_error: 0.0154 - val_loss: 4.7802e-04 - val_mean_absolute_error: 0.0157\n",
"Epoch 99/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 4.7131e-04 - mean_absolute_error: 0.0157 - val_loss: 4.9443e-04 - val_mean_absolute_error: 0.0172\n",
"Epoch 100/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 4.5786e-04 - mean_absolute_error: 0.0155 - val_loss: 5.8704e-04 - val_mean_absolute_error: 0.0173\n",
"Epoch 1/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 0.0492 - mean_absolute_error: 0.1807 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 2/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 3/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0491 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 4/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 5/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 6/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 7/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 8/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0489 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 9/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 10/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 11/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0492 - mean_absolute_error: 0.1807 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 12/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 13/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 14/100\n",
"18750/18750 [==============================] - 7s 354us/step - loss: 0.0490 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 15/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 16/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0491 - mean_absolute_error: 0.1806 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 17/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 18/100\n",
"18750/18750 [==============================] - 7s 365us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 19/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 20/100\n",
"18750/18750 [==============================] - 7s 368us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 21/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 22/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 23/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0490 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 24/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 25/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 0.0491 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 26/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 27/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0490 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 28/100\n",
"18750/18750 [==============================] - 7s 354us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 29/100\n",
"18750/18750 [==============================] - 7s 354us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 30/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 31/100\n",
"18750/18750 [==============================] - 7s 353us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 32/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0491 - mean_absolute_error: 0.1807 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 33/100\n",
"18750/18750 [==============================] - 7s 353us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 34/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 35/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 36/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 37/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0490 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 38/100\n",
"18750/18750 [==============================] - 7s 354us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 39/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 40/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 41/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 42/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 43/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 0.0492 - mean_absolute_error: 0.1806 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 44/100\n",
"18750/18750 [==============================] - 7s 354us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 45/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 46/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 47/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 48/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 49/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 50/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 51/100\n",
"18750/18750 [==============================] - 7s 353us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 52/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 53/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 54/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 55/100\n",
"18750/18750 [==============================] - 7s 354us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 56/100\n",
"18750/18750 [==============================] - 7s 354us/step - loss: 0.0490 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 57/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 58/100\n",
"18750/18750 [==============================] - 7s 354us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 59/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0490 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 60/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 61/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0490 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 62/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0491 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 63/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 64/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0491 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 65/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 66/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 67/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 68/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 69/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 70/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 71/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0488 - mean_absolute_error: 0.1800 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 72/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 0.0490 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 73/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 74/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0488 - mean_absolute_error: 0.1800 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 75/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0490 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 76/100\n",
"18750/18750 [==============================] - 7s 354us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 77/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0490 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 78/100\n",
"18750/18750 [==============================] - 7s 353us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 79/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 80/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 81/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 82/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0492 - mean_absolute_error: 0.1806 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 83/100\n",
"18750/18750 [==============================] - 7s 354us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 84/100\n",
"18750/18750 [==============================] - 7s 354us/step - loss: 0.0489 - mean_absolute_error: 0.1800 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 85/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 86/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0489 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 87/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 88/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 89/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 90/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 0.0490 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 91/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0491 - mean_absolute_error: 0.1806 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 92/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 93/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0488 - mean_absolute_error: 0.1800 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 94/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 95/100\n",
"18750/18750 [==============================] - 7s 354us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 96/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0492 - mean_absolute_error: 0.1808 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 97/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 98/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 99/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 100/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 1/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 2/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 3/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0490 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 4/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 5/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 6/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 7/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0490 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 8/100\n",
"18750/18750 [==============================] - 7s 354us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 9/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 10/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 11/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 12/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 0.0489 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 13/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0490 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 14/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 15/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 16/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 17/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0489 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 18/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 19/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0491 - mean_absolute_error: 0.1806 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 20/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 21/100\n",
"18750/18750 [==============================] - 7s 354us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 22/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 23/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 24/100\n",
"18750/18750 [==============================] - 7s 354us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 25/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 26/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0488 - mean_absolute_error: 0.1800 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 27/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 28/100\n",
"18750/18750 [==============================] - 7s 354us/step - loss: 0.0491 - mean_absolute_error: 0.1807 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 29/100\n",
"18750/18750 [==============================] - 7s 354us/step - loss: 0.0490 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 30/100\n",
"18750/18750 [==============================] - 7s 353us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 31/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 32/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0488 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 33/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0490 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 34/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 35/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0491 - mean_absolute_error: 0.1807 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 36/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0491 - mean_absolute_error: 0.1806 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 37/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 38/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0489 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 39/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 40/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 41/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 42/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 43/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 44/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 45/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0491 - mean_absolute_error: 0.1806 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 46/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0491 - mean_absolute_error: 0.1807 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 47/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 48/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 49/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0490 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 50/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 51/100\n",
"18750/18750 [==============================] - 7s 354us/step - loss: 0.0489 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 52/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 53/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0490 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 54/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 55/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0491 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 56/100\n",
"18750/18750 [==============================] - 7s 354us/step - loss: 0.0490 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 57/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0490 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 58/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 59/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0490 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 60/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 61/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 62/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 63/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0490 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 64/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 65/100\n",
"18750/18750 [==============================] - 7s 354us/step - loss: 0.0491 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 66/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0488 - mean_absolute_error: 0.1800 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 67/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 68/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 69/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 70/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0489 - mean_absolute_error: 0.1801 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 71/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 72/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 73/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 74/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 75/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 76/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0489 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 77/100\n",
"18750/18750 [==============================] - 7s 353us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 78/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0489 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 79/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 80/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0490 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 81/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 82/100\n",
"18750/18750 [==============================] - 7s 354us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 83/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 84/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 85/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 86/100\n",
"18750/18750 [==============================] - 7s 354us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 87/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 88/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 89/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 90/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0491 - mean_absolute_error: 0.1806 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 91/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0491 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 92/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0488 - mean_absolute_error: 0.1800 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 93/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0490 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 94/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0491 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 95/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0489 - mean_absolute_error: 0.1803 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 96/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0491 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 97/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0489 - mean_absolute_error: 0.1802 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 98/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0491 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 99/100\n",
"18750/18750 [==============================] - 7s 355us/step - loss: 0.0490 - mean_absolute_error: 0.1804 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 100/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 0.0490 - mean_absolute_error: 0.1805 - val_loss: 0.0491 - val_mean_absolute_error: 0.1804\n",
"Epoch 1/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 0.0165 - mean_absolute_error: 0.1054 - val_loss: 0.0157 - val_mean_absolute_error: 0.1023\n",
"Epoch 2/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 0.0159 - mean_absolute_error: 0.1038 - val_loss: 0.0155 - val_mean_absolute_error: 0.1025\n",
"Epoch 3/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 0.0156 - mean_absolute_error: 0.1031 - val_loss: 0.0154 - val_mean_absolute_error: 0.1014\n",
"Epoch 4/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0155 - mean_absolute_error: 0.1023 - val_loss: 0.0150 - val_mean_absolute_error: 0.1001\n",
"Epoch 5/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 0.0149 - mean_absolute_error: 0.0995 - val_loss: 0.0122 - val_mean_absolute_error: 0.0861\n",
"Epoch 6/100\n",
"18750/18750 [==============================] - 7s 365us/step - loss: 0.0123 - mean_absolute_error: 0.0859 - val_loss: 0.0118 - val_mean_absolute_error: 0.0826\n",
"Epoch 7/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 0.0116 - mean_absolute_error: 0.0828 - val_loss: 0.0113 - val_mean_absolute_error: 0.0820\n",
"Epoch 8/100\n",
"18750/18750 [==============================] - 7s 365us/step - loss: 0.0113 - mean_absolute_error: 0.0816 - val_loss: 0.0108 - val_mean_absolute_error: 0.0792\n",
"Epoch 9/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 0.0109 - mean_absolute_error: 0.0799 - val_loss: 0.0107 - val_mean_absolute_error: 0.0781\n",
"Epoch 10/100\n",
"18750/18750 [==============================] - 7s 366us/step - loss: 0.0107 - mean_absolute_error: 0.0789 - val_loss: 0.0112 - val_mean_absolute_error: 0.0815\n",
"Epoch 11/100\n",
"18750/18750 [==============================] - 7s 366us/step - loss: 0.0104 - mean_absolute_error: 0.0778 - val_loss: 0.0102 - val_mean_absolute_error: 0.0760\n",
"Epoch 12/100\n",
"18750/18750 [==============================] - 7s 366us/step - loss: 0.0101 - mean_absolute_error: 0.0762 - val_loss: 0.0097 - val_mean_absolute_error: 0.0745\n",
"Epoch 13/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 0.0097 - mean_absolute_error: 0.0745 - val_loss: 0.0092 - val_mean_absolute_error: 0.0716\n",
"Epoch 14/100\n",
"18750/18750 [==============================] - 7s 365us/step - loss: 0.0096 - mean_absolute_error: 0.0737 - val_loss: 0.0090 - val_mean_absolute_error: 0.0712\n",
"Epoch 15/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 0.0092 - mean_absolute_error: 0.0723 - val_loss: 0.0089 - val_mean_absolute_error: 0.0701\n",
"Epoch 16/100\n",
"18750/18750 [==============================] - 7s 367us/step - loss: 0.0090 - mean_absolute_error: 0.0713 - val_loss: 0.0091 - val_mean_absolute_error: 0.0717\n",
"Epoch 17/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 0.0086 - mean_absolute_error: 0.0691 - val_loss: 0.0077 - val_mean_absolute_error: 0.0649\n",
"Epoch 18/100\n",
"18750/18750 [==============================] - 7s 365us/step - loss: 0.0075 - mean_absolute_error: 0.0642 - val_loss: 0.0071 - val_mean_absolute_error: 0.0615\n",
"Epoch 19/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0069 - mean_absolute_error: 0.0610 - val_loss: 0.0072 - val_mean_absolute_error: 0.0625\n",
"Epoch 20/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 0.0063 - mean_absolute_error: 0.0574 - val_loss: 0.0056 - val_mean_absolute_error: 0.0531\n",
"Epoch 21/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 0.0058 - mean_absolute_error: 0.0550 - val_loss: 0.0051 - val_mean_absolute_error: 0.0504\n",
"Epoch 22/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 0.0053 - mean_absolute_error: 0.0520 - val_loss: 0.0045 - val_mean_absolute_error: 0.0475\n",
"Epoch 23/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 0.0047 - mean_absolute_error: 0.0485 - val_loss: 0.0045 - val_mean_absolute_error: 0.0475\n",
"Epoch 24/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 0.0040 - mean_absolute_error: 0.0450 - val_loss: 0.0040 - val_mean_absolute_error: 0.0469\n",
"Epoch 25/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 0.0036 - mean_absolute_error: 0.0426 - val_loss: 0.0044 - val_mean_absolute_error: 0.0475\n",
"Epoch 26/100\n",
"18750/18750 [==============================] - 7s 366us/step - loss: 0.0031 - mean_absolute_error: 0.0397 - val_loss: 0.0028 - val_mean_absolute_error: 0.0380\n",
"Epoch 27/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 0.0027 - mean_absolute_error: 0.0370 - val_loss: 0.0030 - val_mean_absolute_error: 0.0387\n",
"Epoch 28/100\n",
"18750/18750 [==============================] - 7s 367us/step - loss: 0.0023 - mean_absolute_error: 0.0344 - val_loss: 0.0024 - val_mean_absolute_error: 0.0341\n",
"Epoch 29/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 0.0021 - mean_absolute_error: 0.0326 - val_loss: 0.0028 - val_mean_absolute_error: 0.0381\n",
"Epoch 30/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 0.0020 - mean_absolute_error: 0.0316 - val_loss: 0.0019 - val_mean_absolute_error: 0.0317\n",
"Epoch 31/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0019 - mean_absolute_error: 0.0308 - val_loss: 0.0015 - val_mean_absolute_error: 0.0278\n",
"Epoch 32/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 0.0017 - mean_absolute_error: 0.0293 - val_loss: 0.0013 - val_mean_absolute_error: 0.0263\n",
"Epoch 33/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 0.0015 - mean_absolute_error: 0.0281 - val_loss: 0.0011 - val_mean_absolute_error: 0.0233\n",
"Epoch 34/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 0.0014 - mean_absolute_error: 0.0268 - val_loss: 0.0011 - val_mean_absolute_error: 0.0242\n",
"Epoch 35/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0013 - mean_absolute_error: 0.0260 - val_loss: 0.0011 - val_mean_absolute_error: 0.0245\n",
"Epoch 36/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 0.0012 - mean_absolute_error: 0.0250 - val_loss: 0.0019 - val_mean_absolute_error: 0.0345\n",
"Epoch 37/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0012 - mean_absolute_error: 0.0246 - val_loss: 9.4716e-04 - val_mean_absolute_error: 0.0229\n",
"Epoch 38/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 0.0011 - mean_absolute_error: 0.0237 - val_loss: 9.3770e-04 - val_mean_absolute_error: 0.0218\n",
"Epoch 39/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0010 - mean_absolute_error: 0.0233 - val_loss: 0.0014 - val_mean_absolute_error: 0.0276\n",
"Epoch 40/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 9.7522e-04 - mean_absolute_error: 0.0227 - val_loss: 0.0010 - val_mean_absolute_error: 0.0228\n",
"Epoch 41/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 9.5104e-04 - mean_absolute_error: 0.0223 - val_loss: 6.0226e-04 - val_mean_absolute_error: 0.0176\n",
"Epoch 42/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 8.9702e-04 - mean_absolute_error: 0.0218 - val_loss: 0.0015 - val_mean_absolute_error: 0.0268\n",
"Epoch 43/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 8.6049e-04 - mean_absolute_error: 0.0213 - val_loss: 5.9147e-04 - val_mean_absolute_error: 0.0175\n",
"Epoch 44/100\n",
"18750/18750 [==============================] - 7s 366us/step - loss: 8.4166e-04 - mean_absolute_error: 0.0210 - val_loss: 8.2422e-04 - val_mean_absolute_error: 0.0215\n",
"Epoch 45/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 7.6746e-04 - mean_absolute_error: 0.0202 - val_loss: 5.8282e-04 - val_mean_absolute_error: 0.0170\n",
"Epoch 46/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 7.7737e-04 - mean_absolute_error: 0.0202 - val_loss: 5.7449e-04 - val_mean_absolute_error: 0.0175\n",
"Epoch 47/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 7.5904e-04 - mean_absolute_error: 0.0199 - val_loss: 5.5269e-04 - val_mean_absolute_error: 0.0173\n",
"Epoch 48/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 7.3981e-04 - mean_absolute_error: 0.0197 - val_loss: 5.9635e-04 - val_mean_absolute_error: 0.0179\n",
"Epoch 49/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 7.4019e-04 - mean_absolute_error: 0.0197 - val_loss: 6.2830e-04 - val_mean_absolute_error: 0.0182\n",
"Epoch 50/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 7.0524e-04 - mean_absolute_error: 0.0192 - val_loss: 6.7813e-04 - val_mean_absolute_error: 0.0188\n",
"Epoch 51/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 6.9473e-04 - mean_absolute_error: 0.0191 - val_loss: 7.3266e-04 - val_mean_absolute_error: 0.0203\n",
"Epoch 52/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 6.9849e-04 - mean_absolute_error: 0.0191 - val_loss: 5.9904e-04 - val_mean_absolute_error: 0.0178\n",
"Epoch 53/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 6.8526e-04 - mean_absolute_error: 0.0190 - val_loss: 9.8613e-04 - val_mean_absolute_error: 0.0252\n",
"Epoch 54/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 7.0058e-04 - mean_absolute_error: 0.0191 - val_loss: 6.6902e-04 - val_mean_absolute_error: 0.0191\n",
"Epoch 55/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 6.7038e-04 - mean_absolute_error: 0.0187 - val_loss: 4.6837e-04 - val_mean_absolute_error: 0.0160\n",
"Epoch 56/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 6.6695e-04 - mean_absolute_error: 0.0188 - val_loss: 6.6198e-04 - val_mean_absolute_error: 0.0190\n",
"Epoch 57/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 6.5161e-04 - mean_absolute_error: 0.0185 - val_loss: 6.5184e-04 - val_mean_absolute_error: 0.0191\n",
"Epoch 58/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 6.4593e-04 - mean_absolute_error: 0.0184 - val_loss: 6.7298e-04 - val_mean_absolute_error: 0.0205\n",
"Epoch 59/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 6.5881e-04 - mean_absolute_error: 0.0186 - val_loss: 6.2784e-04 - val_mean_absolute_error: 0.0195\n",
"Epoch 60/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 6.4830e-04 - mean_absolute_error: 0.0184 - val_loss: 4.5519e-04 - val_mean_absolute_error: 0.0158\n",
"Epoch 61/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 6.3590e-04 - mean_absolute_error: 0.0183 - val_loss: 5.4012e-04 - val_mean_absolute_error: 0.0167\n",
"Epoch 62/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 6.3265e-04 - mean_absolute_error: 0.0183 - val_loss: 6.2915e-04 - val_mean_absolute_error: 0.0187\n",
"Epoch 63/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 6.2927e-04 - mean_absolute_error: 0.0182 - val_loss: 6.5929e-04 - val_mean_absolute_error: 0.0193\n",
"Epoch 64/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 6.1288e-04 - mean_absolute_error: 0.0180 - val_loss: 4.5137e-04 - val_mean_absolute_error: 0.0156\n",
"Epoch 65/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 6.0204e-04 - mean_absolute_error: 0.0178 - val_loss: 5.5783e-04 - val_mean_absolute_error: 0.0174\n",
"Epoch 66/100\n",
"18750/18750 [==============================] - 7s 365us/step - loss: 6.2032e-04 - mean_absolute_error: 0.0181 - val_loss: 5.6639e-04 - val_mean_absolute_error: 0.0173\n",
"Epoch 67/100\n",
"18750/18750 [==============================] - 7s 367us/step - loss: 6.1125e-04 - mean_absolute_error: 0.0178 - val_loss: 5.2804e-04 - val_mean_absolute_error: 0.0169\n",
"Epoch 68/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 5.9464e-04 - mean_absolute_error: 0.0177 - val_loss: 7.4432e-04 - val_mean_absolute_error: 0.0195\n",
"Epoch 69/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 6.0688e-04 - mean_absolute_error: 0.0177 - val_loss: 8.2405e-04 - val_mean_absolute_error: 0.0214\n",
"Epoch 70/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 5.9729e-04 - mean_absolute_error: 0.0177 - val_loss: 6.1181e-04 - val_mean_absolute_error: 0.0186\n",
"Epoch 71/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 5.9481e-04 - mean_absolute_error: 0.0176 - val_loss: 7.0983e-04 - val_mean_absolute_error: 0.0194\n",
"Epoch 72/100\n",
"18750/18750 [==============================] - 7s 367us/step - loss: 5.8441e-04 - mean_absolute_error: 0.0175 - val_loss: 4.4231e-04 - val_mean_absolute_error: 0.0153\n",
"Epoch 73/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 5.7132e-04 - mean_absolute_error: 0.0173 - val_loss: 5.0463e-04 - val_mean_absolute_error: 0.0166\n",
"Epoch 74/100\n",
"18750/18750 [==============================] - 7s 366us/step - loss: 5.7265e-04 - mean_absolute_error: 0.0174 - val_loss: 5.1096e-04 - val_mean_absolute_error: 0.0162\n",
"Epoch 75/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 5.7707e-04 - mean_absolute_error: 0.0174 - val_loss: 6.8017e-04 - val_mean_absolute_error: 0.0184\n",
"Epoch 76/100\n",
"18750/18750 [==============================] - 7s 365us/step - loss: 5.7570e-04 - mean_absolute_error: 0.0174 - val_loss: 4.6310e-04 - val_mean_absolute_error: 0.0154\n",
"Epoch 77/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 5.5860e-04 - mean_absolute_error: 0.0172 - val_loss: 3.8882e-04 - val_mean_absolute_error: 0.0142\n",
"Epoch 78/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 5.4337e-04 - mean_absolute_error: 0.0169 - val_loss: 4.0328e-04 - val_mean_absolute_error: 0.0146\n",
"Epoch 79/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 5.6962e-04 - mean_absolute_error: 0.0173 - val_loss: 6.2615e-04 - val_mean_absolute_error: 0.0179\n",
"Epoch 80/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 5.4498e-04 - mean_absolute_error: 0.0170 - val_loss: 6.2189e-04 - val_mean_absolute_error: 0.0185\n",
"Epoch 81/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 5.4304e-04 - mean_absolute_error: 0.0169 - val_loss: 4.3306e-04 - val_mean_absolute_error: 0.0152\n",
"Epoch 82/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 5.4121e-04 - mean_absolute_error: 0.0169 - val_loss: 3.6010e-04 - val_mean_absolute_error: 0.0137\n",
"Epoch 83/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 5.3484e-04 - mean_absolute_error: 0.0168 - val_loss: 4.1020e-04 - val_mean_absolute_error: 0.0149\n",
"Epoch 84/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 5.2267e-04 - mean_absolute_error: 0.0166 - val_loss: 4.2822e-04 - val_mean_absolute_error: 0.0152\n",
"Epoch 85/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 5.1975e-04 - mean_absolute_error: 0.0166 - val_loss: 3.5975e-04 - val_mean_absolute_error: 0.0136\n",
"Epoch 86/100\n",
"18750/18750 [==============================] - 7s 365us/step - loss: 5.2816e-04 - mean_absolute_error: 0.0167 - val_loss: 3.5296e-04 - val_mean_absolute_error: 0.0136\n",
"Epoch 87/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 5.2140e-04 - mean_absolute_error: 0.0166 - val_loss: 5.5337e-04 - val_mean_absolute_error: 0.0172\n",
"Epoch 88/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 5.0899e-04 - mean_absolute_error: 0.0164 - val_loss: 4.6756e-04 - val_mean_absolute_error: 0.0158\n",
"Epoch 89/100\n",
"18750/18750 [==============================] - 7s 366us/step - loss: 5.1143e-04 - mean_absolute_error: 0.0164 - val_loss: 5.7264e-04 - val_mean_absolute_error: 0.0183\n",
"Epoch 90/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 5.0084e-04 - mean_absolute_error: 0.0163 - val_loss: 5.3241e-04 - val_mean_absolute_error: 0.0171\n",
"Epoch 91/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 5.1482e-04 - mean_absolute_error: 0.0165 - val_loss: 3.6940e-04 - val_mean_absolute_error: 0.0138\n",
"Epoch 92/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 5.0302e-04 - mean_absolute_error: 0.0163 - val_loss: 5.4232e-04 - val_mean_absolute_error: 0.0172\n",
"Epoch 93/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 5.0533e-04 - mean_absolute_error: 0.0164 - val_loss: 4.6021e-04 - val_mean_absolute_error: 0.0155\n",
"Epoch 94/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 5.1851e-04 - mean_absolute_error: 0.0165 - val_loss: 3.7934e-04 - val_mean_absolute_error: 0.0140\n",
"Epoch 95/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 4.9983e-04 - mean_absolute_error: 0.0162 - val_loss: 5.0210e-04 - val_mean_absolute_error: 0.0166\n",
"Epoch 96/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 4.9377e-04 - mean_absolute_error: 0.0161 - val_loss: 5.1563e-04 - val_mean_absolute_error: 0.0168\n",
"Epoch 97/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 4.9085e-04 - mean_absolute_error: 0.0161 - val_loss: 4.1783e-04 - val_mean_absolute_error: 0.0149\n",
"Epoch 98/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 4.8465e-04 - mean_absolute_error: 0.0160 - val_loss: 3.9469e-04 - val_mean_absolute_error: 0.0150\n",
"Epoch 99/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 4.7694e-04 - mean_absolute_error: 0.0159 - val_loss: 4.5126e-04 - val_mean_absolute_error: 0.0158\n",
"Epoch 100/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 4.6634e-04 - mean_absolute_error: 0.0157 - val_loss: 3.4697e-04 - val_mean_absolute_error: 0.0134\n",
"Epoch 1/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 0.0187 - mean_absolute_error: 0.1104 - val_loss: 0.0158 - val_mean_absolute_error: 0.1039\n",
"Epoch 2/100\n",
"18750/18750 [==============================] - 7s 354us/step - loss: 0.0159 - mean_absolute_error: 0.1039 - val_loss: 0.0157 - val_mean_absolute_error: 0.1037\n",
"Epoch 3/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0156 - mean_absolute_error: 0.1029 - val_loss: 0.0153 - val_mean_absolute_error: 0.1019\n",
"Epoch 4/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0153 - mean_absolute_error: 0.1017 - val_loss: 0.0152 - val_mean_absolute_error: 0.0996\n",
"Epoch 5/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 0.0138 - mean_absolute_error: 0.0933 - val_loss: 0.0121 - val_mean_absolute_error: 0.0833\n",
"Epoch 6/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 0.0119 - mean_absolute_error: 0.0840 - val_loss: 0.0106 - val_mean_absolute_error: 0.0779\n",
"Epoch 7/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 0.0112 - mean_absolute_error: 0.0810 - val_loss: 0.0120 - val_mean_absolute_error: 0.0845\n",
"Epoch 8/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 0.0105 - mean_absolute_error: 0.0781 - val_loss: 0.0098 - val_mean_absolute_error: 0.0754\n",
"Epoch 9/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 0.0102 - mean_absolute_error: 0.0769 - val_loss: 0.0100 - val_mean_absolute_error: 0.0737\n",
"Epoch 10/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0095 - mean_absolute_error: 0.0733 - val_loss: 0.0091 - val_mean_absolute_error: 0.0699\n",
"Epoch 11/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 0.0089 - mean_absolute_error: 0.0708 - val_loss: 0.0082 - val_mean_absolute_error: 0.0671\n",
"Epoch 12/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 0.0083 - mean_absolute_error: 0.0678 - val_loss: 0.0073 - val_mean_absolute_error: 0.0629\n",
"Epoch 13/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 0.0073 - mean_absolute_error: 0.0632 - val_loss: 0.0069 - val_mean_absolute_error: 0.0609\n",
"Epoch 14/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 0.0064 - mean_absolute_error: 0.0587 - val_loss: 0.0055 - val_mean_absolute_error: 0.0549\n",
"Epoch 15/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 0.0055 - mean_absolute_error: 0.0543 - val_loss: 0.0048 - val_mean_absolute_error: 0.0490\n",
"Epoch 16/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0048 - mean_absolute_error: 0.0503 - val_loss: 0.0043 - val_mean_absolute_error: 0.0472\n",
"Epoch 17/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 0.0042 - mean_absolute_error: 0.0470 - val_loss: 0.0059 - val_mean_absolute_error: 0.0581\n",
"Epoch 18/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 0.0037 - mean_absolute_error: 0.0436 - val_loss: 0.0032 - val_mean_absolute_error: 0.0410\n",
"Epoch 19/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0033 - mean_absolute_error: 0.0412 - val_loss: 0.0026 - val_mean_absolute_error: 0.0361\n",
"Epoch 20/100\n",
"18750/18750 [==============================] - 7s 370us/step - loss: 0.0030 - mean_absolute_error: 0.0392 - val_loss: 0.0023 - val_mean_absolute_error: 0.0338\n",
"Epoch 21/100\n",
"18750/18750 [==============================] - 7s 371us/step - loss: 0.0026 - mean_absolute_error: 0.0365 - val_loss: 0.0022 - val_mean_absolute_error: 0.0336\n",
"Epoch 22/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 0.0022 - mean_absolute_error: 0.0330 - val_loss: 0.0027 - val_mean_absolute_error: 0.0358\n",
"Epoch 23/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 0.0019 - mean_absolute_error: 0.0305 - val_loss: 0.0014 - val_mean_absolute_error: 0.0263\n",
"Epoch 24/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0017 - mean_absolute_error: 0.0289 - val_loss: 0.0014 - val_mean_absolute_error: 0.0266\n",
"Epoch 25/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 0.0015 - mean_absolute_error: 0.0275 - val_loss: 0.0012 - val_mean_absolute_error: 0.0239\n",
"Epoch 26/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0013 - mean_absolute_error: 0.0258 - val_loss: 0.0012 - val_mean_absolute_error: 0.0245\n",
"Epoch 27/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 0.0012 - mean_absolute_error: 0.0248 - val_loss: 0.0011 - val_mean_absolute_error: 0.0231\n",
"Epoch 28/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0011 - mean_absolute_error: 0.0242 - val_loss: 9.8805e-04 - val_mean_absolute_error: 0.0228\n",
"Epoch 29/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 0.0011 - mean_absolute_error: 0.0235 - val_loss: 0.0011 - val_mean_absolute_error: 0.0248\n",
"Epoch 30/100\n",
"18750/18750 [==============================] - 7s 367us/step - loss: 0.0010 - mean_absolute_error: 0.0230 - val_loss: 9.6145e-04 - val_mean_absolute_error: 0.0224\n",
"Epoch 31/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 9.8571e-04 - mean_absolute_error: 0.0225 - val_loss: 7.5892e-04 - val_mean_absolute_error: 0.0197\n",
"Epoch 32/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 9.3009e-04 - mean_absolute_error: 0.0219 - val_loss: 7.9565e-04 - val_mean_absolute_error: 0.0201\n",
"Epoch 33/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 8.9681e-04 - mean_absolute_error: 0.0214 - val_loss: 5.8689e-04 - val_mean_absolute_error: 0.0170\n",
"Epoch 34/100\n",
"18750/18750 [==============================] - 7s 365us/step - loss: 8.6196e-04 - mean_absolute_error: 0.0210 - val_loss: 0.0012 - val_mean_absolute_error: 0.0256\n",
"Epoch 35/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 8.3124e-04 - mean_absolute_error: 0.0206 - val_loss: 7.9152e-04 - val_mean_absolute_error: 0.0203\n",
"Epoch 36/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 7.8601e-04 - mean_absolute_error: 0.0200 - val_loss: 0.0010 - val_mean_absolute_error: 0.0224\n",
"Epoch 37/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 7.7720e-04 - mean_absolute_error: 0.0198 - val_loss: 7.0561e-04 - val_mean_absolute_error: 0.0186\n",
"Epoch 38/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 7.6506e-04 - mean_absolute_error: 0.0196 - val_loss: 7.0692e-04 - val_mean_absolute_error: 0.0192\n",
"Epoch 39/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 7.4454e-04 - mean_absolute_error: 0.0194 - val_loss: 9.0127e-04 - val_mean_absolute_error: 0.0218\n",
"Epoch 40/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 7.2479e-04 - mean_absolute_error: 0.0192 - val_loss: 6.1556e-04 - val_mean_absolute_error: 0.0173\n",
"Epoch 41/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 7.1619e-04 - mean_absolute_error: 0.0191 - val_loss: 7.6910e-04 - val_mean_absolute_error: 0.0195\n",
"Epoch 42/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 7.0075e-04 - mean_absolute_error: 0.0188 - val_loss: 6.8010e-04 - val_mean_absolute_error: 0.0183\n",
"Epoch 43/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 6.8589e-04 - mean_absolute_error: 0.0186 - val_loss: 5.3766e-04 - val_mean_absolute_error: 0.0160\n",
"Epoch 44/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 6.5634e-04 - mean_absolute_error: 0.0183 - val_loss: 7.2940e-04 - val_mean_absolute_error: 0.0201\n",
"Epoch 45/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 6.5187e-04 - mean_absolute_error: 0.0182 - val_loss: 9.1681e-04 - val_mean_absolute_error: 0.0227\n",
"Epoch 46/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 6.2411e-04 - mean_absolute_error: 0.0179 - val_loss: 4.9152e-04 - val_mean_absolute_error: 0.0154\n",
"Epoch 47/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 6.2071e-04 - mean_absolute_error: 0.0178 - val_loss: 5.1954e-04 - val_mean_absolute_error: 0.0161\n",
"Epoch 48/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 6.1338e-04 - mean_absolute_error: 0.0177 - val_loss: 4.8405e-04 - val_mean_absolute_error: 0.0152\n",
"Epoch 49/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 6.2495e-04 - mean_absolute_error: 0.0178 - val_loss: 4.5350e-04 - val_mean_absolute_error: 0.0148\n",
"Epoch 50/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 6.1242e-04 - mean_absolute_error: 0.0176 - val_loss: 5.4714e-04 - val_mean_absolute_error: 0.0166\n",
"Epoch 51/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 6.1050e-04 - mean_absolute_error: 0.0177 - val_loss: 4.5383e-04 - val_mean_absolute_error: 0.0157\n",
"Epoch 52/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 5.9639e-04 - mean_absolute_error: 0.0175 - val_loss: 6.8893e-04 - val_mean_absolute_error: 0.0196\n",
"Epoch 53/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 5.9083e-04 - mean_absolute_error: 0.0174 - val_loss: 5.0113e-04 - val_mean_absolute_error: 0.0158\n",
"Epoch 54/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 5.6995e-04 - mean_absolute_error: 0.0171 - val_loss: 9.8139e-04 - val_mean_absolute_error: 0.0233\n",
"Epoch 55/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 5.9813e-04 - mean_absolute_error: 0.0173 - val_loss: 8.9144e-04 - val_mean_absolute_error: 0.0222\n",
"Epoch 56/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 5.8197e-04 - mean_absolute_error: 0.0172 - val_loss: 4.6464e-04 - val_mean_absolute_error: 0.0154\n",
"Epoch 57/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 5.7610e-04 - mean_absolute_error: 0.0171 - val_loss: 4.4228e-04 - val_mean_absolute_error: 0.0150\n",
"Epoch 58/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 5.5040e-04 - mean_absolute_error: 0.0168 - val_loss: 6.0541e-04 - val_mean_absolute_error: 0.0172\n",
"Epoch 59/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 5.5517e-04 - mean_absolute_error: 0.0169 - val_loss: 5.9842e-04 - val_mean_absolute_error: 0.0175\n",
"Epoch 60/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 5.4632e-04 - mean_absolute_error: 0.0168 - val_loss: 4.8324e-04 - val_mean_absolute_error: 0.0156\n",
"Epoch 61/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 5.5144e-04 - mean_absolute_error: 0.0168 - val_loss: 3.5748e-04 - val_mean_absolute_error: 0.0132\n",
"Epoch 62/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 5.5050e-04 - mean_absolute_error: 0.0167 - val_loss: 5.3119e-04 - val_mean_absolute_error: 0.0169\n",
"Epoch 63/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 5.3908e-04 - mean_absolute_error: 0.0167 - val_loss: 3.9886e-04 - val_mean_absolute_error: 0.0142\n",
"Epoch 64/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 5.3556e-04 - mean_absolute_error: 0.0166 - val_loss: 4.8528e-04 - val_mean_absolute_error: 0.0165\n",
"Epoch 65/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 5.3341e-04 - mean_absolute_error: 0.0165 - val_loss: 4.7665e-04 - val_mean_absolute_error: 0.0154\n",
"Epoch 66/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 5.3228e-04 - mean_absolute_error: 0.0165 - val_loss: 3.9131e-04 - val_mean_absolute_error: 0.0139\n",
"Epoch 67/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 5.2299e-04 - mean_absolute_error: 0.0164 - val_loss: 4.5984e-04 - val_mean_absolute_error: 0.0156\n",
"Epoch 68/100\n",
"18750/18750 [==============================] - 7s 367us/step - loss: 5.2837e-04 - mean_absolute_error: 0.0165 - val_loss: 6.8560e-04 - val_mean_absolute_error: 0.0192\n",
"Epoch 69/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 5.1798e-04 - mean_absolute_error: 0.0163 - val_loss: 4.3355e-04 - val_mean_absolute_error: 0.0153\n",
"Epoch 70/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 5.0453e-04 - mean_absolute_error: 0.0161 - val_loss: 5.4180e-04 - val_mean_absolute_error: 0.0166\n",
"Epoch 71/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 5.1300e-04 - mean_absolute_error: 0.0162 - val_loss: 5.4801e-04 - val_mean_absolute_error: 0.0166\n",
"Epoch 72/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 5.0951e-04 - mean_absolute_error: 0.0162 - val_loss: 4.7352e-04 - val_mean_absolute_error: 0.0154\n",
"Epoch 73/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 5.0311e-04 - mean_absolute_error: 0.0161 - val_loss: 4.2083e-04 - val_mean_absolute_error: 0.0144\n",
"Epoch 74/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 4.8638e-04 - mean_absolute_error: 0.0158 - val_loss: 4.3866e-04 - val_mean_absolute_error: 0.0149\n",
"Epoch 75/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 4.9500e-04 - mean_absolute_error: 0.0159 - val_loss: 3.5620e-04 - val_mean_absolute_error: 0.0135\n",
"Epoch 76/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 4.8254e-04 - mean_absolute_error: 0.0158 - val_loss: 5.0160e-04 - val_mean_absolute_error: 0.0162\n",
"Epoch 77/100\n",
"18750/18750 [==============================] - 7s 365us/step - loss: 4.7849e-04 - mean_absolute_error: 0.0157 - val_loss: 5.9712e-04 - val_mean_absolute_error: 0.0184\n",
"Epoch 78/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 4.8515e-04 - mean_absolute_error: 0.0157 - val_loss: 4.1748e-04 - val_mean_absolute_error: 0.0146\n",
"Epoch 79/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 4.7240e-04 - mean_absolute_error: 0.0156 - val_loss: 4.0813e-04 - val_mean_absolute_error: 0.0144\n",
"Epoch 80/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 4.6968e-04 - mean_absolute_error: 0.0155 - val_loss: 4.9191e-04 - val_mean_absolute_error: 0.0157\n",
"Epoch 81/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 4.8081e-04 - mean_absolute_error: 0.0157 - val_loss: 4.2521e-04 - val_mean_absolute_error: 0.0149\n",
"Epoch 82/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 4.7546e-04 - mean_absolute_error: 0.0156 - val_loss: 5.1604e-04 - val_mean_absolute_error: 0.0169\n",
"Epoch 83/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 4.7661e-04 - mean_absolute_error: 0.0156 - val_loss: 4.4765e-04 - val_mean_absolute_error: 0.0154\n",
"Epoch 84/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 4.7375e-04 - mean_absolute_error: 0.0156 - val_loss: 4.6632e-04 - val_mean_absolute_error: 0.0155\n",
"Epoch 85/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 4.6642e-04 - mean_absolute_error: 0.0155 - val_loss: 4.2406e-04 - val_mean_absolute_error: 0.0146\n",
"Epoch 86/100\n",
"18750/18750 [==============================] - 7s 365us/step - loss: 4.6717e-04 - mean_absolute_error: 0.0154 - val_loss: 3.9780e-04 - val_mean_absolute_error: 0.0143\n",
"Epoch 87/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 4.5896e-04 - mean_absolute_error: 0.0153 - val_loss: 4.2838e-04 - val_mean_absolute_error: 0.0155\n",
"Epoch 88/100\n",
"18750/18750 [==============================] - 7s 366us/step - loss: 4.5054e-04 - mean_absolute_error: 0.0152 - val_loss: 3.7960e-04 - val_mean_absolute_error: 0.0146\n",
"Epoch 89/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 4.5130e-04 - mean_absolute_error: 0.0152 - val_loss: 3.3870e-04 - val_mean_absolute_error: 0.0132\n",
"Epoch 90/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 4.4078e-04 - mean_absolute_error: 0.0150 - val_loss: 3.2388e-04 - val_mean_absolute_error: 0.0128\n",
"Epoch 91/100\n",
"18750/18750 [==============================] - 7s 365us/step - loss: 4.5106e-04 - mean_absolute_error: 0.0152 - val_loss: 4.2711e-04 - val_mean_absolute_error: 0.0150\n",
"Epoch 92/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 4.4019e-04 - mean_absolute_error: 0.0150 - val_loss: 3.7699e-04 - val_mean_absolute_error: 0.0133\n",
"Epoch 93/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 4.4261e-04 - mean_absolute_error: 0.0150 - val_loss: 3.7417e-04 - val_mean_absolute_error: 0.0136\n",
"Epoch 94/100\n",
"18750/18750 [==============================] - 7s 365us/step - loss: 4.3228e-04 - mean_absolute_error: 0.0149 - val_loss: 4.2668e-04 - val_mean_absolute_error: 0.0152\n",
"Epoch 95/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 4.3701e-04 - mean_absolute_error: 0.0149 - val_loss: 3.0990e-04 - val_mean_absolute_error: 0.0121\n",
"Epoch 96/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 4.2944e-04 - mean_absolute_error: 0.0148 - val_loss: 3.0912e-04 - val_mean_absolute_error: 0.0123\n",
"Epoch 97/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 4.2298e-04 - mean_absolute_error: 0.0147 - val_loss: 4.6810e-04 - val_mean_absolute_error: 0.0155\n",
"Epoch 98/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 4.2599e-04 - mean_absolute_error: 0.0148 - val_loss: 3.9567e-04 - val_mean_absolute_error: 0.0143\n",
"Epoch 99/100\n",
"18750/18750 [==============================] - 7s 366us/step - loss: 4.3458e-04 - mean_absolute_error: 0.0148 - val_loss: 7.5533e-04 - val_mean_absolute_error: 0.0217\n",
"Epoch 100/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 4.0902e-04 - mean_absolute_error: 0.0145 - val_loss: 3.5114e-04 - val_mean_absolute_error: 0.0136\n"
]
}
],
"source": [
"histories=np.zeros_like(models)\n",
"for i in range(len(models)):\n",
" histories[i]=models[i].fit(X_train,y_train,\n",
" validation_data=(X_val,y_val),\n",
" batch_size=32,\n",
" epochs=100)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "41f3f861-6d2a-4424-8cb5-94ace18364ea",
"metadata": {},
"outputs": [],
"source": [
"model_mixed=keras.models.Sequential()\n",
"model_mixed.add(keras.layers.Dense(units=32, activation='relu', input_dim=X_train.shape[1], kernel_initializer=keras.initializers.HeUniform))\n",
"model_mixed.add(keras.layers.Dense(units=32, activation='sigmoid', kernel_initializer=keras.initializers.GlorotUniform))\n",
"model_mixed.add(keras.layers.Dense(units=64, activation='sigmoid', kernel_initializer=keras.initializers.GlorotUniform))\n",
"model_mixed.add(keras.layers.Dense(units=1, activation='relu', kernel_initializer=keras.initializers.HeUniform))\n",
"model_mixed.compile(optimizer='adam',\n",
" loss='mean_squared_error',\n",
" metrics=['mean_absolute_error'])"
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "0318ddd8-dfa4-4bfc-9d77-7c8b129a87e3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 0.0163 - mean_absolute_error: 0.1050 - val_loss: 0.0160 - val_mean_absolute_error: 0.1058\n",
"Epoch 2/100\n",
"18750/18750 [==============================] - 7s 356us/step - loss: 0.0158 - mean_absolute_error: 0.1035 - val_loss: 0.0158 - val_mean_absolute_error: 0.1044\n",
"Epoch 3/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 0.0155 - mean_absolute_error: 0.1024 - val_loss: 0.0151 - val_mean_absolute_error: 0.1016\n",
"Epoch 4/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 0.0146 - mean_absolute_error: 0.0981 - val_loss: 0.0143 - val_mean_absolute_error: 0.0964\n",
"Epoch 5/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0125 - mean_absolute_error: 0.0870 - val_loss: 0.0112 - val_mean_absolute_error: 0.0804\n",
"Epoch 6/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 0.0113 - mean_absolute_error: 0.0811 - val_loss: 0.0108 - val_mean_absolute_error: 0.0792\n",
"Epoch 7/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 0.0109 - mean_absolute_error: 0.0792 - val_loss: 0.0112 - val_mean_absolute_error: 0.0810\n",
"Epoch 8/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 0.0105 - mean_absolute_error: 0.0775 - val_loss: 0.0096 - val_mean_absolute_error: 0.0746\n",
"Epoch 9/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 0.0093 - mean_absolute_error: 0.0727 - val_loss: 0.0091 - val_mean_absolute_error: 0.0732\n",
"Epoch 10/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 0.0085 - mean_absolute_error: 0.0688 - val_loss: 0.0073 - val_mean_absolute_error: 0.0631\n",
"Epoch 11/100\n",
"18750/18750 [==============================] - 7s 371us/step - loss: 0.0074 - mean_absolute_error: 0.0638 - val_loss: 0.0066 - val_mean_absolute_error: 0.0608\n",
"Epoch 12/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 0.0062 - mean_absolute_error: 0.0574 - val_loss: 0.0060 - val_mean_absolute_error: 0.0559\n",
"Epoch 13/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 0.0055 - mean_absolute_error: 0.0533 - val_loss: 0.0049 - val_mean_absolute_error: 0.0504\n",
"Epoch 14/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 0.0048 - mean_absolute_error: 0.0490 - val_loss: 0.0036 - val_mean_absolute_error: 0.0422\n",
"Epoch 15/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 0.0038 - mean_absolute_error: 0.0439 - val_loss: 0.0041 - val_mean_absolute_error: 0.0471\n",
"Epoch 16/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0030 - mean_absolute_error: 0.0394 - val_loss: 0.0019 - val_mean_absolute_error: 0.0304\n",
"Epoch 17/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 0.0023 - mean_absolute_error: 0.0344 - val_loss: 0.0025 - val_mean_absolute_error: 0.0373\n",
"Epoch 18/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0020 - mean_absolute_error: 0.0319 - val_loss: 0.0015 - val_mean_absolute_error: 0.0274\n",
"Epoch 19/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 0.0018 - mean_absolute_error: 0.0298 - val_loss: 0.0015 - val_mean_absolute_error: 0.0287\n",
"Epoch 20/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 0.0016 - mean_absolute_error: 0.0284 - val_loss: 0.0013 - val_mean_absolute_error: 0.0254\n",
"Epoch 21/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0015 - mean_absolute_error: 0.0272 - val_loss: 0.0013 - val_mean_absolute_error: 0.0251\n",
"Epoch 22/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 0.0014 - mean_absolute_error: 0.0260 - val_loss: 0.0014 - val_mean_absolute_error: 0.0258\n",
"Epoch 23/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 0.0013 - mean_absolute_error: 0.0253 - val_loss: 0.0012 - val_mean_absolute_error: 0.0251\n",
"Epoch 24/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0012 - mean_absolute_error: 0.0244 - val_loss: 0.0012 - val_mean_absolute_error: 0.0234\n",
"Epoch 25/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 0.0011 - mean_absolute_error: 0.0238 - val_loss: 8.2946e-04 - val_mean_absolute_error: 0.0206\n",
"Epoch 26/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 0.0010 - mean_absolute_error: 0.0228 - val_loss: 0.0015 - val_mean_absolute_error: 0.0282\n",
"Epoch 27/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 9.8726e-04 - mean_absolute_error: 0.0226 - val_loss: 7.8138e-04 - val_mean_absolute_error: 0.0197\n",
"Epoch 28/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 9.6040e-04 - mean_absolute_error: 0.0223 - val_loss: 0.0011 - val_mean_absolute_error: 0.0235\n",
"Epoch 29/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 9.1230e-04 - mean_absolute_error: 0.0218 - val_loss: 9.0021e-04 - val_mean_absolute_error: 0.0223\n",
"Epoch 30/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 8.6924e-04 - mean_absolute_error: 0.0213 - val_loss: 8.4191e-04 - val_mean_absolute_error: 0.0212\n",
"Epoch 31/100\n",
"18750/18750 [==============================] - 7s 365us/step - loss: 8.4018e-04 - mean_absolute_error: 0.0209 - val_loss: 0.0019 - val_mean_absolute_error: 0.0321\n",
"Epoch 32/100\n",
"18750/18750 [==============================] - 7s 357us/step - loss: 8.4033e-04 - mean_absolute_error: 0.0209 - val_loss: 9.7924e-04 - val_mean_absolute_error: 0.0232\n",
"Epoch 33/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 8.0410e-04 - mean_absolute_error: 0.0205 - val_loss: 8.3061e-04 - val_mean_absolute_error: 0.0202\n",
"Epoch 34/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 7.9325e-04 - mean_absolute_error: 0.0203 - val_loss: 7.1261e-04 - val_mean_absolute_error: 0.0200\n",
"Epoch 35/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 7.8602e-04 - mean_absolute_error: 0.0202 - val_loss: 5.9531e-04 - val_mean_absolute_error: 0.0173\n",
"Epoch 36/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 7.4934e-04 - mean_absolute_error: 0.0198 - val_loss: 5.9050e-04 - val_mean_absolute_error: 0.0178\n",
"Epoch 37/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 7.2060e-04 - mean_absolute_error: 0.0194 - val_loss: 5.5108e-04 - val_mean_absolute_error: 0.0169\n",
"Epoch 38/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 7.0998e-04 - mean_absolute_error: 0.0192 - val_loss: 5.6978e-04 - val_mean_absolute_error: 0.0176\n",
"Epoch 39/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 7.0327e-04 - mean_absolute_error: 0.0192 - val_loss: 6.3382e-04 - val_mean_absolute_error: 0.0191\n",
"Epoch 40/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 6.8717e-04 - mean_absolute_error: 0.0189 - val_loss: 7.6121e-04 - val_mean_absolute_error: 0.0206\n",
"Epoch 41/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 6.5767e-04 - mean_absolute_error: 0.0185 - val_loss: 9.7121e-04 - val_mean_absolute_error: 0.0239\n",
"Epoch 42/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 6.5005e-04 - mean_absolute_error: 0.0184 - val_loss: 6.4900e-04 - val_mean_absolute_error: 0.0183\n",
"Epoch 43/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 6.3856e-04 - mean_absolute_error: 0.0183 - val_loss: 6.3351e-04 - val_mean_absolute_error: 0.0182\n",
"Epoch 44/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 6.1954e-04 - mean_absolute_error: 0.0180 - val_loss: 4.9793e-04 - val_mean_absolute_error: 0.0160\n",
"Epoch 45/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 6.1985e-04 - mean_absolute_error: 0.0180 - val_loss: 4.4391e-04 - val_mean_absolute_error: 0.0152\n",
"Epoch 46/100\n",
"18750/18750 [==============================] - 7s 358us/step - loss: 5.9981e-04 - mean_absolute_error: 0.0178 - val_loss: 4.7827e-04 - val_mean_absolute_error: 0.0157\n",
"Epoch 47/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 5.9940e-04 - mean_absolute_error: 0.0178 - val_loss: 6.7507e-04 - val_mean_absolute_error: 0.0188\n",
"Epoch 48/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 5.9299e-04 - mean_absolute_error: 0.0176 - val_loss: 5.9828e-04 - val_mean_absolute_error: 0.0181\n",
"Epoch 49/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 5.8850e-04 - mean_absolute_error: 0.0176 - val_loss: 4.2146e-04 - val_mean_absolute_error: 0.0148\n",
"Epoch 50/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 5.7291e-04 - mean_absolute_error: 0.0173 - val_loss: 5.5165e-04 - val_mean_absolute_error: 0.0170\n",
"Epoch 51/100\n",
"18750/18750 [==============================] - 7s 365us/step - loss: 5.7243e-04 - mean_absolute_error: 0.0173 - val_loss: 5.4992e-04 - val_mean_absolute_error: 0.0168\n",
"Epoch 52/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 5.8064e-04 - mean_absolute_error: 0.0174 - val_loss: 7.6522e-04 - val_mean_absolute_error: 0.0192\n",
"Epoch 53/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 5.5837e-04 - mean_absolute_error: 0.0171 - val_loss: 3.7729e-04 - val_mean_absolute_error: 0.0139\n",
"Epoch 54/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 5.4775e-04 - mean_absolute_error: 0.0169 - val_loss: 7.2287e-04 - val_mean_absolute_error: 0.0193\n",
"Epoch 55/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 5.4507e-04 - mean_absolute_error: 0.0169 - val_loss: 5.2354e-04 - val_mean_absolute_error: 0.0169\n",
"Epoch 56/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 5.5791e-04 - mean_absolute_error: 0.0170 - val_loss: 3.6747e-04 - val_mean_absolute_error: 0.0136\n",
"Epoch 57/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 5.4389e-04 - mean_absolute_error: 0.0169 - val_loss: 5.2052e-04 - val_mean_absolute_error: 0.0164\n",
"Epoch 58/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 5.4896e-04 - mean_absolute_error: 0.0169 - val_loss: 7.9571e-04 - val_mean_absolute_error: 0.0216\n",
"Epoch 59/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 5.2328e-04 - mean_absolute_error: 0.0166 - val_loss: 4.5743e-04 - val_mean_absolute_error: 0.0151\n",
"Epoch 60/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 5.3059e-04 - mean_absolute_error: 0.0166 - val_loss: 5.1968e-04 - val_mean_absolute_error: 0.0161\n",
"Epoch 61/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 5.0781e-04 - mean_absolute_error: 0.0163 - val_loss: 4.2339e-04 - val_mean_absolute_error: 0.0153\n",
"Epoch 62/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 5.0901e-04 - mean_absolute_error: 0.0163 - val_loss: 5.4574e-04 - val_mean_absolute_error: 0.0169\n",
"Epoch 63/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 5.0503e-04 - mean_absolute_error: 0.0163 - val_loss: 4.7407e-04 - val_mean_absolute_error: 0.0151\n",
"Epoch 64/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 5.1626e-04 - mean_absolute_error: 0.0164 - val_loss: 5.8969e-04 - val_mean_absolute_error: 0.0180\n",
"Epoch 65/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 5.1441e-04 - mean_absolute_error: 0.0164 - val_loss: 3.5121e-04 - val_mean_absolute_error: 0.0134\n",
"Epoch 66/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 5.1447e-04 - mean_absolute_error: 0.0163 - val_loss: 4.4777e-04 - val_mean_absolute_error: 0.0151\n",
"Epoch 67/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 4.9721e-04 - mean_absolute_error: 0.0161 - val_loss: 4.6706e-04 - val_mean_absolute_error: 0.0160\n",
"Epoch 68/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 4.7959e-04 - mean_absolute_error: 0.0159 - val_loss: 4.7260e-04 - val_mean_absolute_error: 0.0160\n",
"Epoch 69/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 4.9529e-04 - mean_absolute_error: 0.0161 - val_loss: 5.1170e-04 - val_mean_absolute_error: 0.0174\n",
"Epoch 70/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 4.8029e-04 - mean_absolute_error: 0.0158 - val_loss: 5.5782e-04 - val_mean_absolute_error: 0.0159\n",
"Epoch 71/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 4.7628e-04 - mean_absolute_error: 0.0158 - val_loss: 4.7913e-04 - val_mean_absolute_error: 0.0160\n",
"Epoch 72/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 4.8591e-04 - mean_absolute_error: 0.0159 - val_loss: 3.7890e-04 - val_mean_absolute_error: 0.0138\n",
"Epoch 73/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 4.8060e-04 - mean_absolute_error: 0.0158 - val_loss: 4.1332e-04 - val_mean_absolute_error: 0.0145\n",
"Epoch 74/100\n",
"18750/18750 [==============================] - 7s 359us/step - loss: 4.7238e-04 - mean_absolute_error: 0.0157 - val_loss: 5.1453e-04 - val_mean_absolute_error: 0.0166\n",
"Epoch 75/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 4.7576e-04 - mean_absolute_error: 0.0157 - val_loss: 3.6188e-04 - val_mean_absolute_error: 0.0133\n",
"Epoch 76/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 4.7006e-04 - mean_absolute_error: 0.0156 - val_loss: 4.0508e-04 - val_mean_absolute_error: 0.0146\n",
"Epoch 77/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 4.6711e-04 - mean_absolute_error: 0.0156 - val_loss: 4.3654e-04 - val_mean_absolute_error: 0.0154\n",
"Epoch 78/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 4.7930e-04 - mean_absolute_error: 0.0156 - val_loss: 5.3041e-04 - val_mean_absolute_error: 0.0165\n",
"Epoch 79/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 4.6607e-04 - mean_absolute_error: 0.0156 - val_loss: 3.9712e-04 - val_mean_absolute_error: 0.0145\n",
"Epoch 80/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 4.5676e-04 - mean_absolute_error: 0.0154 - val_loss: 3.7035e-04 - val_mean_absolute_error: 0.0140\n",
"Epoch 81/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 4.5534e-04 - mean_absolute_error: 0.0154 - val_loss: 6.7935e-04 - val_mean_absolute_error: 0.0175\n",
"Epoch 82/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 4.4209e-04 - mean_absolute_error: 0.0152 - val_loss: 3.0094e-04 - val_mean_absolute_error: 0.0124\n",
"Epoch 83/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 4.5072e-04 - mean_absolute_error: 0.0153 - val_loss: 4.9114e-04 - val_mean_absolute_error: 0.0163\n",
"Epoch 84/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 4.4901e-04 - mean_absolute_error: 0.0153 - val_loss: 3.8599e-04 - val_mean_absolute_error: 0.0140\n",
"Epoch 85/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 4.5136e-04 - mean_absolute_error: 0.0152 - val_loss: 3.8554e-04 - val_mean_absolute_error: 0.0141\n",
"Epoch 86/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 4.3593e-04 - mean_absolute_error: 0.0151 - val_loss: 3.7972e-04 - val_mean_absolute_error: 0.0135\n",
"Epoch 87/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 4.4672e-04 - mean_absolute_error: 0.0151 - val_loss: 4.8179e-04 - val_mean_absolute_error: 0.0155\n",
"Epoch 88/100\n",
"18750/18750 [==============================] - 7s 364us/step - loss: 4.3549e-04 - mean_absolute_error: 0.0150 - val_loss: 4.6216e-04 - val_mean_absolute_error: 0.0158\n",
"Epoch 89/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 4.3476e-04 - mean_absolute_error: 0.0150 - val_loss: 3.6614e-04 - val_mean_absolute_error: 0.0136\n",
"Epoch 90/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 4.3906e-04 - mean_absolute_error: 0.0150 - val_loss: 4.9844e-04 - val_mean_absolute_error: 0.0164\n",
"Epoch 91/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 4.2275e-04 - mean_absolute_error: 0.0148 - val_loss: 4.0900e-04 - val_mean_absolute_error: 0.0140\n",
"Epoch 92/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 4.2736e-04 - mean_absolute_error: 0.0149 - val_loss: 4.3093e-04 - val_mean_absolute_error: 0.0158\n",
"Epoch 93/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 4.1034e-04 - mean_absolute_error: 0.0146 - val_loss: 3.6711e-04 - val_mean_absolute_error: 0.0134\n",
"Epoch 94/100\n",
"18750/18750 [==============================] - 7s 362us/step - loss: 4.1896e-04 - mean_absolute_error: 0.0148 - val_loss: 5.1838e-04 - val_mean_absolute_error: 0.0161\n",
"Epoch 95/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 4.1208e-04 - mean_absolute_error: 0.0147 - val_loss: 3.3842e-04 - val_mean_absolute_error: 0.0137\n",
"Epoch 96/100\n",
"18750/18750 [==============================] - 7s 361us/step - loss: 4.0929e-04 - mean_absolute_error: 0.0146 - val_loss: 4.1079e-04 - val_mean_absolute_error: 0.0151\n",
"Epoch 97/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 4.0987e-04 - mean_absolute_error: 0.0146 - val_loss: 4.6050e-04 - val_mean_absolute_error: 0.0149\n",
"Epoch 98/100\n",
"18750/18750 [==============================] - 7s 363us/step - loss: 4.0293e-04 - mean_absolute_error: 0.0144 - val_loss: 3.4880e-04 - val_mean_absolute_error: 0.0137\n",
"Epoch 99/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 3.9736e-04 - mean_absolute_error: 0.0143 - val_loss: 4.7751e-04 - val_mean_absolute_error: 0.0152\n",
"Epoch 100/100\n",
"18750/18750 [==============================] - 7s 360us/step - loss: 4.0610e-04 - mean_absolute_error: 0.0145 - val_loss: 4.6150e-04 - val_mean_absolute_error: 0.0150\n"
]
}
],
"source": [
"hist_mixed=model_mixed.fit(X_train,y_train,\n",
" validation_data=(X_val,y_val),\n",
" batch_size=32,\n",
" epochs=100)"
]
},
{
"cell_type": "code",
"execution_count": 37,
"id": "10235cc1-e181-4a89-a135-0785488a8684",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHWCAYAAACbuObIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADatUlEQVR4nOzdd3xN9xvA8c/J3pMMBCGEkBiNvWLv7UdbtUtrq1HVmqXUqD1rlKoarVZbs/aKFXtEFLFqCyFL1vn9ceXWlSA3bnJDnvfrdV6599xzzvc59972Pr5TUVVVRQghhBAiBzIxdgBCCCGEEMYiiZAQQgghcixJhIQQQgiRY0kiJIQQQogcSxIhIYQQQuRYkggJIYQQIseSREgIIYQQOZYkQkIIIYTIsSQREkIIIUSOJYmQEM8sXboURVFQFIVdu3alel1VVXx8fFAUhaCgIIOWrSgKo0eP1vu8K1euoCgKS5cuNchx76qff/6Z6dOnp9qf8r5MmTIlU8uPiYlh9OjRaX6vDGHXrl0v/d6mR0a/f9lJZr/H4t0liZAQL7C3t2fx4sWp9u/evZtLly5hb29vhKjEm3hZIpRVYmJiGDNmTKb9SJctW5YDBw5QtmzZDJ1/4MABPv74YwNHlbUy+z0W7y5JhIR4Qbt27Vi7di2PHz/W2b948WIqVapE/vz5jRSZyCliYmL0Ot7BwYGKFSvi4OCQofIqVqxIvnz5MnSuEG87SYSEeMEHH3wAwMqVK7X7IiMjWbt2LV27dk3znIiICHr16kXevHmxsLCgUKFCfPXVVzx9+lTnuMePH9O9e3dcXV2xs7OjQYMGXLhwIc1r/vPPP3z44Ye4ublhaWlJ8eLFmTNnjoHuUmPfvn3Url0be3t7bGxsqFy5Mhs2bNA5JiYmhsGDB+Pt7Y2VlRUuLi4EBgbqvD+XL1/m/fffJ0+ePFhaWuLu7k7t2rU5ceLEa2P4888/qVSpEjY2Ntjb21O3bl0OHDigc8zo0aNRFIWzZ8/ywQcf4OjoiLu7O127diUyMvKV1w8KCmLDhg1cvXpV2/SpKEqq46ZOnYq3tzd2dnZUqlSJgwcPpjomJCSEZs2a4eLigpWVFWXKlGHNmjWvLP/KlSvkzp0bgDFjxmjL79y5s869HTt2jDZt2uDs7EzhwoW15b3//vsULFgQa2trChYsyAcffMDVq1d1ykiraaxz587Y2dlx8eJFGjVqhJ2dHV5eXgwaNCjV9/LFprGUZuKdO3fSs2dPcuXKhaurK61ateLmzZs65z59+pRBgwbh4eGBjY0N1atX5+jRoxQsWFB7j68yb948SpUqhZ2dHfb29hQrVowvv/xS55jbt2/zySefkC9fPiwsLPD29mbMmDEkJiam6z0W4lXMjB2AENmNg4MDbdq0YcmSJXzyySeAJikyMTGhXbt2qZpY4uLiqFmzJpcuXWLMmDEEBASwd+9eJkyYwIkTJ7SJhaqqtGjRguDgYEaOHEm5cuXYv38/DRs2TBXDuXPnqFy5Mvnz5+e7777Dw8ODLVu20K9fP+7fv8+oUaPe+D53795N3bp1CQgIYPHixVhaWjJ37lyaNm3KypUradeuHQADBw5k+fLljBs3jjJlyhAdHc2ZM2d48OCB9lqNGjUiKSmJSZMmkT9/fu7fv09wcDCPHj16ZQw///wz7du3p169eqxcuZKnT58yadIkgoKC2L59O1WrVtU5vnXr1rRr145u3bpx+vRphg0bBsCSJUteWsbcuXPp0aMHly5d4vfff0/zmDlz5lCsWDHtZztixAgaNWpEeHg4jo6OAOzcuZMGDRpQoUIF5s+fj6OjI6tWraJdu3bExMS89EfX09OTzZs306BBA7p166Ztgkr54U7RqlUr3n//fT799FOio6MBzQ+8r68v77//Pi4uLty6dYt58+ZRrlw5zp07R65cuV75/iYkJNCsWTO6devGoEGD2LNnD2PHjsXR0ZGRI0e+8lyAjz/+mMaNG/Pzzz9z/fp1hgwZwkcffcSOHTu0x3Tp0oXVq1fz+eefU6tWLc6dO0fLli1T1aimZdWqVfTq1Yu+ffsyZcoUTExMuHjxIufOndMec/v2bcqXL4+JiQkjR46kcOHCHDhwgHHjxnHlyhV++OGHdL/HQqRJFUKoqqqqP/zwgwqoR44cUXfu3KkC6pkzZ1RVVdVy5cqpnTt3VlVVVUuUKKHWqFFDe978+fNVQF2zZo3O9SZOnKgC6t9//62qqqpu2rRJBdQZM2boHPfNN9+ogDpq1Cjtvvr166v58uVTIyMjdY7t06ePamVlpUZERKiqqqrh4eEqoP7www+vvLe0jqtYsaLq5uamPnnyRLsvMTFRLVmypJovXz41OTlZVVVVLVmypNqiRYuXXvv+/fsqoE6fPv2VMbwoKSlJzZMnj+rv768mJSVp9z958kR1c3NTK1eurN03atQoFVAnTZqkc41evXqpVlZW2lhfpnHjxmqBAgVS7U95X/z9/dXExETt/sOHD6uAunLlSu2+YsWKqWXKlFETEhJ0rtGkSRPV09NT5x5edO/evVSf8Yv3NnLkyFfeg6pqPp+oqCjV1tZW53uU8n3duXOndl+nTp3S/F42atRI9fX11dn3Ymwp/y306tVL57hJkyapgHrr1i1VVVX17NmzKqAOHTpU57iVK1eqgNqpU6dX3k+fPn1UJyenVx7zySefqHZ2durVq1d19k+ZMkUF1LNnz6qq+ur3WIhXkaYxIdJQo0YNChcuzJIlSzh9+jRHjhx5abPYjh07sLW1pU2bNjr7U2oItm/fDmhqFADat2+vc9yHH36o8zwuLo7t27fTsmVLbGxsSExM1G6NGjUiLi4uzWYbfURHR3Po0CHatGmDnZ2ddr+pqSkdOnTgxo0bhIWFAVC+fHk2bdrEF198wa5du4iNjdW5louLC4ULF2by5MlMnTqV48ePk5yc/NoYwsLCuHnzJh06dMDE5L//FdnZ2dG6dWsOHjyYqq9Ms2bNdJ4HBAQQFxfH3bt39X4Pnte4cWNMTU11rgtom6AuXrzI+fPntZ/di5/JrVu3tO9XRrVu3TrVvqioKIYOHYqPjw9mZmaYmZlhZ2dHdHQ0oaGhr72moig0bdpUZ19AQECqprWXSev9hv/el927dwPQtm1bnePatGmDmdnrGxzKly/Po0eP+OCDD/jjjz+4f/9+qmPWr19PzZo1yZMnj877nlKTmhKDEBkliZAQaVAUhS5duvDTTz8xf/58ihYtSrVq1dI89sGDB3h4eKTqd+Lm5oaZmZm2CenBgweYmZnh6uqqc5yHh0eq6yUmJjJr1izMzc11tkaNGgGk+YOhj4cPH6KqKp6enqley5MnjzYOgJkzZzJ06FDWrVtHzZo1cXFxoUWLFvzzzz+A5r3avn079evXZ9KkSZQtW5bcuXPTr18/njx58tIYUq7/shiSk5N5+PChzv4X3ztLS0uAVMmZvl533Tt37gAwePDgVJ9Jr169gDf/TNJ6Hz788ENmz57Nxx9/zJYtWzh8+DBHjhwhd+7c6bpnGxsbrKysUt1bXFxcumJ63fuS8hm6u7vrHJfW9zwtHTp0YMmSJVy9epXWrVvj5uZGhQoV2Lp1q/aYO3fu8Ndff6V630uUKAG8+fsuhPQREuIlOnfuzMiRI5k/fz7ffPPNS49zdXXl0KFDqKqqkwzdvXuXxMREbT8OV1dXEhMTefDggc6PxO3bt3Wu5+zsrK2Z6d27d5plent7v8mt4ezsjImJCbdu3Ur1Wkpn2JS4bW1tGTNmDGPGjOHOnTva2qGmTZty/vx5AAoUKKCdcuDChQusWbOG0aNHEx8fz/z589OMIeU9eFkMJiYmODs7v9F9GkrKezFs2DBatWqV5jG+vr5vVMaLiXRkZCTr169n1KhRfPHFF9r9T58+JSIi4o3KMpSUz/DOnTvkzZtXuz/le54eXbp0oUuXLkRHR7Nnzx5GjRpFkyZNuHDhAgUKFCBXrlwEBAS89L/BlMRdiIySREiIl8ibNy9Dhgzh/PnzdOrU6aXH1a5dmzVr1rBu3Tpatmyp3f/jjz9qXweoWbMmkyZ
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"colors=['blue','orange','green','olive','purple','gray','red']\n",
"legend=['RandomNormal','RandomUniform','GlorotNormal','GlorotUniform','HeNormal','HeUniform','Glorot+He']\n",
"for i in range(len(my_initializers)):\n",
" plt.plot(histories[i].history['loss'],color=colors[i])\n",
" plt.yscale('log')\n",
"plt.plot(hist_mixed.history['loss'],color=colors[-1])\n",
"plt.title('Model loss on the training set \\n for different weights initializers')\n",
"plt.xlabel('epoch')\n",
"plt.ylabel('mean squared error')\n",
"plt.legend(legend,loc='upper right')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "74f43d53-00e5-4968-9198-3b2b316a9015",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHWCAYAAACfTTb1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC+hElEQVR4nOzdd3yN1x/A8c/N3nsakdgrsWJE7D2qFD9aM2ZRM5TqsEeNqj1qj1ZpqVJqiyKhYo+IFWIFCZJKRNbz++M2t64EuZG4yPf9et1Xc889z3m+z723vd+ec55zVIqiKAghhBBC5CEG+g5ACCGEEOJNkwRICCGEEHmOJEBCCCGEyHMkARJCCCFEniMJkBBCCCHyHEmAhBBCCJHnSAIkhBBCiDxHEiAhhBBC5DmSAAkhhBAiz5EESLzXVqxYgUqlQqVSERQUlOF1RVEoWrQoKpWKOnXq5Oi5VSoVY8aM0fm4a9euoVKpWLFiRY7Ue1/99NNPzJw5M0N5+vsyffr0Nx/Ua/L09CQgIEDzXJfPeMyYMahUqmyd90XvJWT/e/w2CQ4OZsyYMTx69EjfoYi3iCRAIk+wtrZm6dKlGcr379/PlStXsLa21kNU4nW87Ef7feHu7k5ISAjNmzfP1fO87L0MCQmhZ8+euXr+3BYcHMzYsWMlARJaJAESeUL79u3ZsGEDcXFxWuVLly7Fz88PDw8PPUUmxIuZmppSrVo1nJ2d9RZDtWrVKFCggN7OL0RukQRI5AmffPIJAGvXrtWUxcbGsmHDBrp3757pMQ8ePKBfv37kz58fExMTChcuzFdffcXTp0+16sXFxdGrVy8cHR2xsrKiSZMmXLx4MdM2L126RIcOHXBxccHU1JRSpUoxb968HLpKtYMHD1K/fn2sra2xsLCgevXqbN26VatOQkICw4YNw8vLCzMzMxwcHPD19dV6f65evcrHH39Mvnz5MDU1xdXVlfr163Py5MlXxrB582b8/PywsLDA2tqahg0bEhISolUnfcjm3LlzfPLJJ9ja2uLq6kr37t2JjY19aft16tRh69atXL9+XTPEmdnwz4wZM/Dy8sLKygo/Pz8OHz6coU5oaCgffvghDg4OmJmZUaFCBdavX//S8ycnJ+Pi4kLnzp0zvPbo0SPMzc0JDAwEIDExkaFDh1K+fHlsbW1xcHDAz8+P33///aXngBcPgW3dupXy5ctjamqKl5fXC4f75s2bR61atXBxccHS0hJvb2+mTp1KcnKyps6r3svMhsDOnj1Ly5Ytsbe3x8zMjPLly7Ny5UqtOkFBQahUKtauXctXX31Fvnz5sLGxoUGDBoSHh7/y2u/fv0/v3r0pWLAgpqamODs74+/vz+7du7Xq7d69m/r162NjY4OFhQX+/v7s2bNH8/qYMWP4/PPPAfDy8nrpkLjIW4z0HYAQb4KNjQ1t27Zl2bJlfPrpp4A6GTIwMKB9+/YZuv8TExOpW7cuV65cYezYsfj4+HDgwAEmT57MyZMnNQmFoii0atWK4OBgRo0aReXKlTl06BBNmzbNEMP58+epXr06Hh4efPfdd7i5ubFjxw4GDhxIdHQ0o0ePfu3r3L9/Pw0bNsTHx4elS5diamrK/PnzadGiBWvXrqV9+/YABAYGsnr1aiZMmECFChWIj4/n7NmzxMTEaNpq1qwZqampTJ06FQ8PD6KjowkODn7lMMJPP/1Ex44dadSoEWvXruXp06dMnTqVOnXqsGfPHmrUqKFVv02bNrRv354ePXpw5swZRo4cCcCyZcteeI758+fTu3dvrly5wm+//ZZpnXnz5lGyZEnNZ/vNN9/QrFkzIiIisLW1BWDfvn00adKEqlWrsnDhQmxtbfn5559p3749CQkJWvNxnmVsbEynTp1YuHAh8+bNw8bGRvPa2rVrSUxMpFu3bgA8ffqUBw8eMGzYMPLnz09SUhK7d++mdevWLF++nC5durz0/Xzenj17aNmyJX5+fvz888+az+ju3bsZ6l65coUOHTrg5eWFiYkJp06dYuLEiVy4cEHz/mblvXxWeHg41atXx8XFhdmzZ+Po6MiaNWsICAjg7t27DB8+XKv+l19+ib+/P0uWLCEuLo4RI0bQokULwsLCMDQ0fOF5OnfuzPHjx5k4cSLFixfn0aNHHD9+XOs7umbNGrp06ULLli1ZuXIlxsbGLFq0iMaNG7Njxw7q169Pz549efDgAXPmzGHjxo24u7sDULp06Sy93+I9pgjxHlu+fLkCKEePHlX27dunAMrZs2cVRVGUypUrKwEBAYqiKEqZMmWU2rVra45buHChAijr16/Xam/KlCkKoOzcuVNRFEX5888/FUCZNWuWVr2JEycqgDJ69GhNWePGjZUCBQoosbGxWnX79++vmJmZKQ8ePFAURVEiIiIUQFm+fPlLry2zetWqVVNcXFyUf/75R1OWkpKilC1bVilQoICSlpamKIqilC1bVmnVqtUL246OjlYAZebMmS+N4XmpqalKvnz5FG9vbyU1NVVT/s8//yguLi5K9erVNWWjR49WAGXq1KlabfTr108xMzPTxPoizZs3VwoVKpShPP198fb2VlJSUjTlf//9twIoa9eu1ZSVLFlSqVChgpKcnKzVxgcffKC4u7trXcPzTp8+rQDKDz/8oFVepUoVpVKlSi88LiUlRUlOTlZ69OihVKhQQeu1QoUKKV27ds1wLc9+xlWrVlXy5cunPHnyRFMWFxenODg4KC/7T3pqaqqSnJysrFq1SjE0NNR83xTlxe+loigZvscff/yxYmpqqkRGRmrVa9q0qWJhYaE8evRIURRF8+9bs2bNtOqtX79eAZSQkJAXxqooimJlZaUMHjz4ha/Hx8crDg4OSosWLTJcZ7ly5ZQqVapoyqZNm6YASkRExEvPKfIWGQITeUbt2rUpUqQIy5Yt48yZMxw9evSFw1979+7F0tKStm3bapWn9wikd7Hv27cPgI4dO2rV69Chg9bzxMRE9uzZw0cffYSFhQUpKSmaR7NmzUhMTMx0eEYX8fHxHDlyhLZt22JlZaUpNzQ0pHPnzty8eVMz9FClShX+/PNPvvjiC4KCgnjy5IlWWw4ODhQpUoRp06YxY8YMTpw4QVpa2itjCA8P5/bt23Tu3BkDg//+82JlZUWbNm04fPgwCQkJWsd8+OGHWs99fHxITEzk3r17Or8Hz2revLlWD4OPjw8A169fB+Dy5ctcuHBB89k9/5ncuXPnpUM13t7eVKpUieXLl2vKwsLC+PvvvzN8r3755Rf8/f2xsrLCyMgIY2Njli5dSlhYmE7XFB8fz9GjR2ndujVmZmaacmtra1q0aJGh/okTJ/jwww9xdHTE0NAQY2NjunTpQmpq6guHaV9l79691K9fn4IFC2qVBwQEkJCQkGGoM7PPF/77HF6kSpUqrFixggkTJnD48GGtYTtQT2x+8OABXbt21frs0tLSaNKkCUePHiU+Pj5b1yjyBkmARJ6hUqno1q0ba9asYeHChRQvXpyaNWtmWjcmJgY3N7cM80pcXFwwMjLSdMPHxMRgZGSEo6OjVj03N7cM7aWkpDBnzhyMjY21Hs2aNQMgOjr6ta7v4cOHKIqi6eJ/Vr58+TRxAMyePZsRI0awadMm6tati4ODA61ateLSpUuA+r3as2cPjRs3ZurUqVSsWBFnZ2cGDhzIP//888IY0tt/UQxpaWk8fPhQq/z5987U1BQgQ1Kmq1e1mz5kNGzYsAyfSb9+/YBXfybdu3cnJCSECxcuALB8+XJMTU01c84ANm7cSLt27cifPz9r1qwhJCREk3wnJibqdE0PHz4kLS0tw/cLMn7nIiMjqVmzJrdu3WLWrFkcOHCAo0ePauacZff9jYmJydJ3LF12P99169bRtWtXlixZgp+fHw4ODnTp0oWoqCjgv8+vbdu2GT6/KVOmoCgKDx48yNY1irxB5gCJPCUgIIBRo0axcOFCJk6c+MJ6jo6OHDlyBEVRtJKge/fukZKSgpOTk6ZeSkoKMTExWv+hT/+PdDp7e3tNT8xnn32W6Tm9vLxe59Kwt7fHwMCAO3fuZHjt9u3bAJq4LS0
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"colors=['blue','orange','green','olive','purple','gray','red']\n",
"legend=['RandomNormal','RandomUniform','GlorotNormal','GlorotUniform','HeNormal','HeUniform','Glorot+He']\n",
"for i in range(len(my_initializers)):\n",
" plt.plot(histories[i].history['val_loss'],color=colors[i])\n",
"plt.plot(hist_mixed.history['val_loss'], color=colors[-1])\n",
"plt.title('Model loss on the validation set \\n for different weights initializers')\n",
"plt.xlabel('epoch')\n",
"plt.ylabel('mean squared error')\n",
"plt.legend(legend,loc='upper right')\n",
"plt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.19"
}
},
"nbformat": 4,
"nbformat_minor": 5
}