diff --git a/dataset_splitting.ipynb b/dataset_splitting.ipynb
new file mode 100644
index 0000000..e794f51
--- /dev/null
+++ b/dataset_splitting.ipynb
@@ -0,0 +1,732 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "f1396231-0139-456f-96d8-6f18199e8e25",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import seaborn as sns\n",
+ "import matplotlib.pyplot as plt\n",
+ "import math\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "import scipy\n",
+ "from scipy.stats import ks_2samp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "3521f41e-c9d2-42f3-b657-45634f3fd8ac",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df=pd.read_csv(r'/home/unipi/v.vichi3/Desktop/dataframe.csv')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "ab94adc5-854e-49cd-9a9f-bce8ffd4ee87",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " ID | \n",
+ " a | \n",
+ " e | \n",
+ " i | \n",
+ " om | \n",
+ " w | \n",
+ " ma | \n",
+ " H-value | \n",
+ " MOID | \n",
+ " EPOCH | \n",
+ " PHA | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " '0000001' | \n",
+ " 2.662454 | \n",
+ " 0.533875 | \n",
+ " 26.69427 | \n",
+ " 19.950131 | \n",
+ " 284.514731 | \n",
+ " 14.514345 | \n",
+ " 9.45 | \n",
+ " 0.4615 | \n",
+ " 59945.0 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " '0000002' | \n",
+ " 1.457965 | \n",
+ " 0.222633 | \n",
+ " 10.82898 | \n",
+ " 209.642798 | \n",
+ " 343.753667 | \n",
+ " 338.406046 | \n",
+ " 11.16 | \n",
+ " 0.1356 | \n",
+ " 59945.0 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " '0000003' | \n",
+ " 1.893819 | \n",
+ " 0.538294 | \n",
+ " 41.18978 | \n",
+ " 286.606414 | \n",
+ " 287.585635 | \n",
+ " 83.688834 | \n",
+ " 12.40 | \n",
+ " 0.1162 | \n",
+ " 59945.0 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " '0000004' | \n",
+ " 2.001212 | \n",
+ " 0.448742 | \n",
+ " 17.44771 | \n",
+ " 214.338458 | \n",
+ " 245.558687 | \n",
+ " 15.816629 | \n",
+ " 12.60 | \n",
+ " 0.2447 | \n",
+ " 59945.0 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " '0000005' | \n",
+ " 4.221445 | \n",
+ " 0.713243 | \n",
+ " 30.98228 | \n",
+ " 206.677675 | \n",
+ " 330.127884 | \n",
+ " 117.375359 | \n",
+ " 12.90 | \n",
+ " 0.2592 | \n",
+ " 59945.0 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " ID a e i om w \\\n",
+ "0 '0000001' 2.662454 0.533875 26.69427 19.950131 284.514731 \n",
+ "1 '0000002' 1.457965 0.222633 10.82898 209.642798 343.753667 \n",
+ "2 '0000003' 1.893819 0.538294 41.18978 286.606414 287.585635 \n",
+ "3 '0000004' 2.001212 0.448742 17.44771 214.338458 245.558687 \n",
+ "4 '0000005' 4.221445 0.713243 30.98228 206.677675 330.127884 \n",
+ "\n",
+ " ma H-value MOID EPOCH PHA \n",
+ "0 14.514345 9.45 0.4615 59945.0 0.0 \n",
+ "1 338.406046 11.16 0.1356 59945.0 0.0 \n",
+ "2 83.688834 12.40 0.1162 59945.0 0.0 \n",
+ "3 15.816629 12.60 0.2447 59945.0 0.0 \n",
+ "4 117.375359 12.90 0.2592 59945.0 0.0 "
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "21f6c17e-a521-455d-82c3-0f6aeea7df77",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "kep=df.iloc[:,1:6]\n",
+ "y=df.iloc[:,-3]\n",
+ "X=kep.to_numpy()\n",
+ "y=y.to_numpy()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "505356c7-da2b-4929-b65b-f775f835cc5a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#Split the data into training and test\n",
+ "X_train, X_test, y_train, y_test = train_test_split(X,y, train_size=750000)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "9458e17f-873a-4355-964b-6c162eebd71e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df_train=pd.DataFrame(X_train, columns=['a','e','i','om','w'])\n",
+ "df_test=pd.DataFrame(X_test, columns=['a','e','i','om','w'])\n",
+ "ydf_train=pd.DataFrame(y_train, columns=['MOID'])\n",
+ "ydf_test=pd.DataFrame(y_test,columns=['MOID'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "32d4bbfb-26fa-4add-8246-e1c267667b28",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#Comparison of some statistical measures between training and test set \n",
+ "A_train=df_train.describe()\n",
+ "A_test=df_test.describe()\n",
+ "B_train=ydf_train.describe()\n",
+ "B_test=ydf_test.describe()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "af994684-c4b9-461f-8c0e-e13e0cd9b909",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " a | \n",
+ " e | \n",
+ " i | \n",
+ " om | \n",
+ " w | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " mean | \n",
+ " 0.002937 | \n",
+ " -0.000607 | \n",
+ " 0.027988 | \n",
+ " 0.420302 | \n",
+ " 0.343676 | \n",
+ "
\n",
+ " \n",
+ " std | \n",
+ " -0.001472 | \n",
+ " 0.000403 | \n",
+ " 0.064839 | \n",
+ " -0.227066 | \n",
+ " 0.136723 | \n",
+ "
\n",
+ " \n",
+ " min | \n",
+ " -0.000002 | \n",
+ " -0.001717 | \n",
+ " -0.049321 | \n",
+ " -0.000011 | \n",
+ " -0.023646 | \n",
+ "
\n",
+ " \n",
+ " 25% | \n",
+ " 0.005710 | \n",
+ " -0.000832 | \n",
+ " 0.016489 | \n",
+ " 1.228961 | \n",
+ " 0.372439 | \n",
+ "
\n",
+ " \n",
+ " 50% | \n",
+ " 0.009029 | \n",
+ " -0.000021 | \n",
+ " 0.066847 | \n",
+ " 0.206380 | \n",
+ " 0.186781 | \n",
+ "
\n",
+ " \n",
+ " 75% | \n",
+ " 0.000243 | \n",
+ " -0.000705 | \n",
+ " -0.010827 | \n",
+ " -0.018515 | \n",
+ " 0.263608 | \n",
+ "
\n",
+ " \n",
+ " max | \n",
+ " 0.027082 | \n",
+ " 0.000222 | \n",
+ " 3.584705 | \n",
+ " 0.001342 | \n",
+ " 0.022134 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " a e i om w\n",
+ "mean 0.002937 -0.000607 0.027988 0.420302 0.343676\n",
+ "std -0.001472 0.000403 0.064839 -0.227066 0.136723\n",
+ "min -0.000002 -0.001717 -0.049321 -0.000011 -0.023646\n",
+ "25% 0.005710 -0.000832 0.016489 1.228961 0.372439\n",
+ "50% 0.009029 -0.000021 0.066847 0.206380 0.186781\n",
+ "75% 0.000243 -0.000705 -0.010827 -0.018515 0.263608\n",
+ "max 0.027082 0.000222 3.584705 0.001342 0.022134"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "A_train.iloc[1:,:]-A_test.iloc[1:,:] \n",
+ "#the first row of the describe method is the count of objects, so we ignore it"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "17336f68-0547-40f9-a003-a86422fa899e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGdCAYAAACPX3D5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJJklEQVR4nO3deVgU9R8H8PeCsILJIcrlCVqEHIrgAYqKeGLeiVkpmnnl8VMyFa8stU00Q/M2LySVlDLLuxTU1BLFI+/KxBBEDg88lmt/f5hbuwjsMcuyzvvVM88T35n5zmfmQfaz32skCoVCASIiIhItM2MHQERERMbFZICIiEjkmAwQERGJHJMBIiIikWMyQEREJHJMBoiIiESOyQAREZHIMRkgIiISOSYDREREIlfF2AE886TQ2BGQGHH9Tf3cvv/E2CGYLAtzfhfTR207S4PWb+U3VrC6HqcsFawuQ6k0yQAREVGlIRFXsiauuyUiIqIS2DJARESkTiIxdgQVii0DRERE6iRmwm1aWLFiBXx9fWFjYwMbGxsEBgZiz549pR6fmJgIiURSYrt8+bJW12XLABERkTojtQzUqVMHn376KRo1agQA2LhxI3r16oWUlBR4eXmVet6VK1dgY2Oj/LlWrVpaXZfJABERUSXRo0cPlZ/nzZuHFStW4MSJE2UmA46OjrCzs9P5uuwmICIiUidgN4FcLsf9+/dVNrlcXm4IRUVF2Lp1Kx4+fIjAwMAyj/Xz84OLiwtCQ0Nx6NAhrW+XyQAREZE6iUSwTSaTwdbWVmWTyWSlXvr8+fN46aWXIJVKMWrUKHz77bdo3Ljxc491cXHB6tWrkZCQgG+++QYeHh4IDQ3F4cOHtbtdhaJyLLvCRYfIGCrHb7/p4qJDuuOiQ/ox+KJDLT8QrK67h+eWaAmQSqWQSqXPPT4/Px+pqam4e/cuEhIS8OWXXyIpKanUhEBdjx49IJFIsHPnTo1j1HnMQHFxMX7//XdkZmaiuLhYZV/btm11rZaIiMj4BFx0qKwP/uextLRUDiAMCAjAyZMnsXjxYqxatUqj81u1aoW4uDitYtQpGThx4gTefPNN3LhxA+oNCxKJBEVFRbpUS0REVDlUonUGFAqFRmMMnklJSYGLi4tW19ApGRg1ahQCAgKwa9cuuLi4QFKJHhoREZGpmjZtGrp164a6deviwYMH2Lp1KxITE7F3714AQFRUFNLS0hAbGwsAiImJQYMGDeDl5YX8/HzExcUhISEBCQkJWl1Xp2Tg2rVr2L59u7IZg4iI6IVipHcT3L59G4MGDUJ6ejpsbW3h6+uLvXv3olOnTgCA9PR0pKamKo/Pz8/HpEmTkJaWBisrK3h5eWHXrl0ICwvT6ro6DSDs0KEDJk+ejK5du2p7aqk4gJCMgQMI9cMBhLrjAEL9GHwAYevpgtX1+Od5gtVlKDq1DIwbNw7vv/8+MjIy4OPjAwsLC5X9vr6+ggRHREREhqdTy4CZWcmMViKRQKFQ6DyAkC0DZAxsGdAPWwZ0x5YB/Ri8ZaDNTMHqenx0jmB1GYpOLQPXr18XOg4iIqLKQ2QD43VKBurXry90HERERJWHkQYQGoteLyq6ePEiUlNTkZ+fr1Les2dPvYIiIiKiiqNT6vPnn3+iSZMm8Pb2Rvfu3dG7d2/07t0bffr0QZ8+fYSOUSvxW75Ct84d0NzPB2/074vTp5LLPD755K94o39fNPfzQViXUHwdv6XEMT/u34c+PcIQ0NQbfXqE4acfD6jsX7tmFd4M74fA5n5oHxyICePew1/X/1Q5JjsrCzOnTUXH9m3Q0r8JRo8Yhhs3/tL7fvVhjGel6XX//OMPjB8zCq1b+iOwuR/eHhiO9Fu3lPu3fx2PYUMGIahFMzTx8sD9+/d1eAKGFb/1K4R16YAWzXwwMFyz5zswvC9aNPNB966h2Kb2fBO2f42hg99EcFBzBAc1x8h3h+D8+XMqxxQWFmLpks8R1qUDWvr7onvXUKxasbTEKqGm6PuEeAzu1w2vtW+OMUPfwPkzpzU678K5FHQLbobREeEq5bu/S0Dk6CHo16UN+nVpgynjR+DyxfOGCN3ovtu+FW/27oouwf4YOTgc51JOlXrs+TOnMW74IPTu1AZd2wYgIrwHtm2JLfX4g/v3oENLH8z8YLwhQjceAV9UZAp0ivJ///sf3NzccPv2bVhbW+PChQs4fPgwAgICkJiYKHCImtu7ZzeiP5Vh+IjRiN++A82a+eO9kcNVPkT+6++/b2LM6BFo1swf8dt34N3hozD/k3n4cf8+5TFnz6Rg8qSJeK1nL2z75ju81rMXJr8/AefOnVUek3zyVwwY+BY2bfkaq9asR2FREUYNH4ZHjx4BeLp61ITxY/D33zcR88VyxG//Fi6utTFy2FDlMRXNWM9Kk+veTE3FkEFvws3NHV9u2IRt3+zEiFHvwfI/y3k+efIYQa2DMWz4KAM8Hf3t27MbCz6V4d3ho7F12w74NfPHmFHDkZ7+/Oeb9vdNjH1vBPya+WPrth0Y9u4ozJfNw48H/n2+ySd/Qdew7lizLhaxcVvh7OyC0SPewe3bt5XHrF+7Btu/3oqp02bhm527MSHyA2xcvxZbvtpk8Hs2pMQf92Ll4mgMjBiO5Rvi4d2kGWa8/x4yM9LLPO9h3gMs+HgG/PxblNh3LiUZIR27IfqLL/H5qk1wdHLGtAmjkXXn9nNqMl2HDuzFss/n462hw7E6dht8mvpj6sTRuF3Ks6tqZYXerw/E56s2YMPW7/D20BFYv3Ipfvh2W4ljM9JvYeWShfBp2szQt1HxzCTCbSZAp9kENWvWxMGDB+Hr6wtbW1v8+uuv8PDwwMGDB/H+++8jJSVF60CEmE3w1hv94dm4MWbM+khZ1rtHN4R06Ij/TXy/xPGff7YASYkHseP7PcqyOR/NwtUrV7BpczwA4IP3J+BhXh6Wr/pSeczoEcNgY2OL+QsXPTeOnJwchAQHYt3GOPgHNMdff11Hr+5dkfDdD2jU6GUAT19NGRIchAmRk9D39f7637yWjPWsNLnu5EkTUaVKFXzy6YJy7+Pkr7/g3aGDceT4SdjY2Gj5FAw3m+Dtgf3h6dkY0/9zn33+uc/xz3m+MYsWIOnQQXz7n+c796NZuHr1CmK/in/uNYqKitA2qDmmTpuFHr16AwDGvTcSDg4OmD3nE+Vx708Yh6pVq2KeBs9TWxU1m2D8u2+hkYcnxn8wQ1n27sDeCGobgndG/6/U8z6ZORm169aDmZk5jh05hBUbvy712KKiIrzeJRjvvR+FTt16lHqcUCpqNsF777yJlz08MXHKv6PjhwzoidZtO2D4mAka1TFrygRUrWqFaR/9+6a9oqIiTBw1FF179Mb5M6eQ9+AB5ixYInT4pTL4bIIQ4WYAPD4k3MwEQ9Hpt7GoqAgvvfQSgKeJwa1/vtXVr18fV65cES46LRTk5+PSxQsIDGqjUh4Y1Bpnzzw/OTl39gwCg1qrlAW1DsbFC7+hoKDg6TFnzpSoM6h1cKl1AkDegwcAABtbW2VsACC1/Pebrbm5OSwsLJByuvTmOkMx1rPS5LrFxcU4kpSI+vUbYNTwYWgfHIi33uiPgz/9qPsNV7CCguffZ6ug1jh7tvTn26qc56vuyZPHKCwshO0/v2cA4NfMH7/8cgI3/no64+fK5ctIOX0Kbdq20+eWjKqgoADXrlyCfwvV97n7twjExfNnSzkL2PfDDqSn/Y2339Gs9Uj+5AkKCwtRXYeksrIqKCjA1csXEdAySKU8oEUQLpw/o1Ed165cwoVzZ9CkWYBK+aa1K2Frb4+wnn2FCrdyEVk3gU4DCL29vXHu3Dm4u7ujZcuWiI6OhqWlJVavXg13d3ehY9RI7t1cFBUVwcHBQaXcwaEmsrLuPPecrKwsODjUVDveAYWFhbh7Nxe1ajn+c4x6nQ6l1qlQKLAwWga/Zv54+eVXAAAN3Nzh6lobS2I+w8wPP4aVlRViN25AVtYd3Lnz/HoMyVjPSpPr5mRn49GjR1i3dg3GjpuACZGT8PPRI4j831h8uT4WAc1LNvdWNrm5T++zhpbPN0jt+dZQe77qFn/+GRwdndAy8N8/9EOHDUfegwfo3aMbzM3NUVRUhLHjJ6Jb2GsC3Jlx3L+bi+KiItjVUH2edjUckJuT9dxz0m7ewLoVi/HZivUwr6LZn7l1KxbDoZYjmgW00jvmyuLeP8/OXu3Z2Ts4IOdEdpnnhr8Winv//JuNeHc0uvfqp9z329kU7N75DdbEbTdI3JUCpxaWb8aMGXj48CEAYO7cuXjttdcQHBwMBwcHxMc/v0nzv+RyeYk3MCnMtXvFY2nUX5r0bCEkbY4HAAkkpR+D0uuUzf0Y165exYZNm5VlFhYW+CxmCWbPnI7goBYwNzdHy1aBaBNs3Fc9G+tZlXXdYsXTgW4hIaEYFDEEAPCqpyfOnjmNbfFbTSIZeEaw5/ucc9avW4O9u3fhy/WxKv9u9u3ZjV0/7IRs/mdo2KgRrly+hAXzZajl6IievYw7uFdf//09A549n5LPpqioCJ9+GIVB745GnXoNNKr767j1OHRgDxYsW6syNuVFof4r9PR3sexzFq/eiMePHuHib+fw5bIYuNaph9AuYXj08CE++TAK70+bDVs7e8MFTRVKp2SgS5cuyv93d3fHxYsXkZOTA3t7e43eYCiTyfDRRx+plE2f+SFmzJqtSzgAAHs7e5ibmyMrS/WbQk5OdolvtM/UrFnym1pOTg6qVKkCWzu7/xyjVmd2znPrlM2bg8TEg1i3MQ5Ozs4q+xp7eePrb77DgwcPUFBQgBo1auCtN/rDy8tb21vVm7GelSbXtbezR5UqVeDesKHKMW7uDXHGCF0qurC3f3qf2Xo+39xnz9fWTqV84/q1WLtmFVatWY9XPF5V2ff5Z9EY+u4IdA3rDgB4+RUPpKffwrovV5lsMmBjZw8zc/MSrQD3cnNKfOMFgMePHuLq5Qv4/dplLFv0KQBAUVwMhUKBbsHNIPt8BZoGtFQev23zRmyNXYtPF6+Ce6NXDHszFcz2n2eXk63aCnA35/nP7r9cXOsAANwbvYLcnGxs/HIFQruE4VbaTWSkp2H6pHHKYxX/zFbpGNQUG7/+HrXr1BX4TozARJr3haLX3f7+++/Yt28fHj9+jBo1amh8XlRUFO7du6eyfTAlSp9QYGFpCc/GXjhx7GeV8hPHjqFJU7/nnuPbpClOHDumUnb82FE09vJWvm/Bt2lTnDj+c4lj/lunQqHAJ3M/xk8/7seadRtRp4x/CNWrV0eNGjVw48ZfuHjhN7TvEKrVfQrBWM9Kk+taWFrCy9sHf/2lusrljRt/wcW1tpZ3ahwWFk/v87jas/jl+DE0aVL68/3leNnPFwA2rPsSa1Ytx/KVX8LL26dEPU+ePIGZWkJuZmaO4mLTXXfZwsICL3t44vSvJ1TKT588gcY+TUocb13tJazatB0rNsQrt+69+6NOvQZYsSEer3r9+9y2fbUBm9evxrxFy/GKp5fB76WiWVhY4JVXG+PUr8dVyk/9ehxePk01r0ihQEHB07FP9eq7Ye3mb7Bm0zblFhTcHk39W2DNpm1wdHIupzITIZEIt5kAnVoGsrOzER4ejkOHDkEikeDatWtwd3fHu+++Czs7O3z22Wdlni+VluwSEGI2waCIoZg+dTIae3ujSRM/JGyLR3p6OvoPeAPA0z7WzMzbmCeLBgD0H/AGtm75Cgvmy9Dv9XCcPZuCbxMSMH/Bv/G/9fZgvBPxNtZ9uRohHUJx6OBP+OXEcaz/TzfAJ3M+wp7dPyDmi+WoZl0NWf+MA3ipenVUrVoVALB/3x7Y29eAi4srrl27gmjZJwjp0BFBrVUHmVUUYz2r8q4LABFDh2Hy+xPh798czVu0xM9Hj+Bw4iF8uf7fuc5Zd+4gKysLN/95lefv167C2roaXFxclC0VxjRo8FBMj5oMLy9v+DbxQ8L2p/f5+j/3ueSf5zv32fMNf/p8F0bL0LdfOM6dTcG33yTg0/883/Xr1mD5F4shi/4MrrVrK1sSrK2tYW1dDQDQtn0IvlyzEs4urk+7CS5dQlzsevTq0w+mrO8bg7Dg4+l4xbMxPL2bYPd3Cci8nY7uvZ/OxFm3YjGy7mRi8qx5MDMzQ4OGL6ucb2dfA5ZSqUr513HrEbtmGabM/hROLq7IyX7a8mBlZQ0ra+uKuzkD6z9wMGSzo+Dxqhca+zTBDzu24fbtdPTo+3TdhTXLYpB1JxNRs5/OQNmxbQscnV1Qr74bAOD82dP4+quN6B0+EABgKZXCTe35vlS9OgCUKCfToVMyMHHiRFhYWCA1NRWenp7K8gEDBmDixInlJgOG0rVbGO7dzcXqFctx504mGr38CpatXA3Xf75RZt25g4z0f+fW1qlTF8tWrMaC+TLEb/kKtRwdMWXadHTs/G83SFO/Zpi/YBGWfhGDZV8sQd16dTF/4efw9f33G8mzxXeGDRmkEs/Hc2Xo1efpSNs7d+5gYfSnyM7KRq1atfBaz14YOeo9gz2L8hjrWZV3XQAI7dgJMz6cjXVrVmO+bC4aNHDDZzFL0Mz/39HM277eipXLlyp/Hjr4LQCqz9yYunQLw917uVi1cjmy/rnPpSv+vc87WXeQ/p/nW7tOXSxdvhoLo//zfKOmo2Onf5/v11u3oKCgAJMmqi7uMnL0WIwe87TJduq0GVj2xWLI5n6EnJxs1KrliH79B2Dk6DEVcNeG075jVzy4dw9frVuNnOw7qO/eCHMXLoOTiysAICc7C3duZ2hV5w/ffI2CggLMna461fPtd0Zh0LujBYvd2EI6dcX9e3cRu24lcrLuoIF7I8g+Xw5n5bO7g8zb//4uFiuK8eXyxci4lQZzc3O41KmLd8dMQI8+FT8F2qhE1k2g0zoDzs7O2LdvH5o0aYLq1avj7NmzcHd3x/Xr1+Hj44O8vDytA+FbC8kY+NZC/fCthbrjWwv1Y/B1BrosFKyux/smCVaXoejUMvDw4UNYP6cZLSsrS5AZAUREREYlspYBne62bdu2iI39t/9WIpGguLgYCxYsQEhIiGDBERERkeHp1DKwYMECtG/fHsnJycjPz8fkyZNx4cIF5OTk4Oeffy6/AiIiosrMRGYBCEWnloHGjRvj7NmzaNGiBTp16oSHDx+ib9++SElJQUO1+eFEREQmh8sRa8be3h7du3dH8+bNla9HPXnyJACgZ8+ewkRHREREBqdTMrB3714MHjwY2dnZUJ+MIJFIUFRUJEhwRERERsFugvKNHTsW/fv3x61bt1BcXKyyMREgIiKTJ7JuAp2izMzMRGRkJJycnISOh4iIiCqYTsnA66+/jsTERIFDISIiqiRE1jKg05iBpUuXon///jhy5Ah8fHxUXqQCAOPHjy/lTCIiIhMgsjEDOiUDmzdvxr59+2BlZYXExESV1xZLJBImA0RERCZEp2RgxowZ+PjjjzF16lSYmZlGEwgREZHGTKR5Xyg6JQP5+fkYMGAAEwEiInoxiaybQKdP84iICMTHxwsdCxERUeXAAYTlKyoqQnR0NPbt2wdfX98SAwgXLVokSHBERERkeDolA+fPn4efnx8A4LffflPZJxFZ0woREb2ARPZZplMycOjQIaHjICIiqjTE9sXWNDoziIiIyGB0fmshERHRi0psLQNMBoiIiNSJKxdgNwEREZHYsWWARK1YoTB2CCatmpR/QnRlac7vYpUZuwmIiIhETmzJAFNTIiIikWPLABERkRq2DBAREYmcRCIRbNPGihUr4OvrCxsbG9jY2CAwMBB79uwp85ykpCT4+/ujatWqcHd3x8qVK7W+XyYDRERE6iQCblqoU6cOPv30UyQnJyM5ORkdOnRAr169cOHChecef/36dYSFhSE4OBgpKSmYNm0axo8fj4SEBO1uV6GoHMOpnxQaOwISo6LiSvHrb7Ie5RcZOwSTxdkE+rG1Muzzs31zk2B13ds8SK/za9SogQULFmDYsGEl9k2ZMgU7d+7EpUuXlGWjRo3C2bNncfz4cY2vwTEDREREaoQcMyCXyyGXy1XKpFIppFJpmecVFRVh27ZtePjwIQIDA597zPHjx9G5c2eVsi5dumDt2rUoKCgo8Vbh0jA1JSIiUiPkmAGZTAZbW1uVTSaTlXrt8+fP46WXXoJUKsWoUaPw7bffonHjxs89NiMjA05OTiplTk5OKCwsRFZWlsb3y5YBIiIiA4qKikJkZKRKWVmtAh4eHjhz5gzu3r2LhIQEREREICkpqdSEQL0V41nvvzatG0wGiIiI1AjZTaBJl8B/WVpaolGjRgCAgIAAnDx5EosXL8aqVatKHOvs7IyMjAyVsszMTFSpUgUODg4aX5PJABERkZrKtM6AQqEoMebgmcDAQHz//fcqZfv370dAQIDG4wUAjhkgIiKqNKZNm4YjR47gr7/+wvnz5zF9+nQkJibirbfeAvC0y2Hw4MHK40eNGoUbN24gMjISly5dwrp167B27VpMmjRJq+uyZYCIiEidkRoGbt++jUGDBiE9PR22trbw9fXF3r170alTJwBAeno6UlNTlce7ublh9+7dmDhxIpYtWwZXV1csWbIE/fr10+q6XGeARI3rDOiH6wzojusM6MfQ6wzUHLJVsLqyNrwhWF2Gwt9GIiIikWM3ARERkZrKNICwIjAZICIiUsNkgIiISOzElQtongycO3dO40p9fX11CoaIiIgqnsbJQNOmTSGRSKBQKMptPikq4ghjIiIyXWLrJtB4NsH169fx559/4vr160hISICbmxuWL1+OlJQUpKSkYPny5WjYsKHW71AWWvyWr9Ctcwc09/PBG/374vSp5DKPTz75K97o3xfN/XwQ1iUUX8dvKXHMj/v3oU+PMAQ09UafHmH46ccDKvtPJZ/EuPdGoWP7Nmji5YGDP/1Yoo6Z06aiiZeHyvb2wHD9blZgxnh22l7349mz0MTLA3GxG7S+PyIiTQn5oiJToHEyUL9+feX2ySefYMmSJRg5ciR8fX3h6+uLkSNHIiYmBnPmzDFkvGXau2c3oj+VYfiI0YjfvgPNmvnjvZHDkX7r1nOP//vvmxgzegSaNfNH/PYdeHf4KMz/ZB5+3L9PeczZMymYPGkiXuvZC9u++Q6v9eyFye9PwLlzZ5XHPH78CB4eHpg6fVaZ8bVuE4yfEo8qt2UrVgtz4wIw1rPT5roHf/oRv507i1qOjsI/ACIiEdNpnYHz58/Dzc2tRLmbmxsuXryod1C62rRxPfr064e+r/eHe8OGmBw1Hc4uzs/9xgoA2+K3wsXFBZOjpsO9YUP0fb0/evfti40b1imPidu0Ea0CgzBs+Ei4uTfEsOEj0aJlK3wVu1F5TJvgdhj7v4no2Knz8y6jZGlpiZq1aik3Wzs7Qe5bCMZ6dppe9/bt25DN+xifRC+ERRXN19smItIFWwY04Onpiblz5+LJkyfKMrlcjrlz58LT01Ow4LRRkJ+PSxcvIDCojUp5YFBrnD2T8txzzp09g8Cg1iplQa2DcfHCbygoKHh6zJkzJeoMah1cap1lST75K9oHB6JHWBd8NGsGsrOzta7DEIz17DS9bnFxMaZP/QBDhg5Do0Yv63aTRERaEFsyoNPUwpUrV6JHjx6oW7cumjRpAgA4e/YsJBIJfvjhB0ED1FTu3VwUFRWVeGWjg0NNZGXdee45WVlZcHCoqXa8AwoLC3H3bi5q1XL85xj1Oh1KrbM0rYPbolOXrnBxdUXa339j+ReLMfydCGzd9g0sLS21qktoxnp2ml53/do1MK9SBW++PRhERCQ8nZKBFi1a4Pr164iLi8Ply5ehUCgwYMAAvPnmm6hWrVq558vl8hKvY1SYa/e+59KoZ2HlzX543vEAIPnPJNMSx6D8GRXqunYLU/7/yy+/Ai9vb3Tt2AGHkxLL7V6oKMZ6dmVd9+KF3/DVplhs3f6NyWTYRPQCENmfG52SgcOHDyMoKAgjRoxQKS8sLMThw4fRtm3bMs+XyWT46KOPVMqmz/wQM2bN1iUcAIC9nT3Mzc2RlZWlUp6Tk13iG+wzNWuW/Oabk5ODKlWqKPvznx6jVmd2Tql1aqpWLUe4uroi9cZfetUjBGM9O02ue/pUMnJystG1Y4hyf1FRET5bMB9fbYrFngMHtb9hIqJyiO3Lh05jBkJCQpCTk1Oi/N69ewgJCXnOGaqioqJw7949le2DKVG6hKJkYWkJz8ZeOHHsZ5XyE8eOoUlTv+ee49ukKU4cO6ZSdvzYUTT28oaFxdNBar5Nm+LE8Z9LHFNanZq6ezcXGRnpqFXL+CPjjfXsNLnuaz17Ydu3OxGfsEO51XJ0RMTQYVix+kvdb5qIiJR0ahkorfk4Oztbo24CqbRkl4AQrzAeFDEU06dORmNvbzRp4oeEbfFIT09H/wFPXx+5+PPPkJl5G/Nk0QCA/gPewNYtX2HBfBn6vR6Os2dT8G1CAuYv+ExZ51tvD8Y7EW9j3ZerEdIhFIcO/oRfThzH+k2blcc8evhQ5f3SaX//jcuXLsHW1hYurq549PAhVixfio6dOqNmrVq4lZaGLxZ/Djt7e3To2FH/GxeAsZ5dede1s7OHnZ29SqwWVSxQs2ZNNHBzN/RjISKRElvLgFbJQN++fQE8fUhDhgxR+UAvKirCuXPnEBQUJGyEWujaLQz37uZi9YrluHMnE41efgXLVq6Gq2ttAEDWnTvISE9XHl+nTl0sW7EaC+bLEL/lK9RydMSUadPRsXMX5TFN/Zph/oJFWPpFDJZ9sQR169XF/IWfw9e3ifKYCxd+w7tD/x3ctjBaBgDo2asP5nzyKczMzXHt6lV8v3MHHtx/gFq1aqF5i5aIXvg5qlV7ydCPRSPGenblXZeIyBjElgxIFM9GfWlg6NChAICNGzciPDwcVlZWyn2WlpZo0KABhg8fjpo1te9PF6JlgEhbRcUa//rTczzK59LjurI016mXlv5ha2XY51d37HeC1XVzaS/B6jIUrVoG1q9fDwCoVasWZs+eDWtrawDAX3/9hR07dsDT01OnRICIiIiMR6fUKiUlBbGxsQCAu3fvolWrVvjss8/Qu3dvrFixQtAAiYiIKprYFh3SORkIDg4GAGzfvh1OTk64ceMGYmNjsWTJEkEDJCIiqmhMBjTw6NEjVK9eHQCwf/9+9O3bF2ZmZmjVqhVu3LghaIBERERkWDolA40aNcKOHTtw8+ZN7Nu3D507P11BLzMzEzY2NoIGSEREVNHYMqCBWbNmYdKkSWjQoAFatmyJwMBAAE9bCfz89FuMh4iIyNjElgzotOjQ66+/jjZt2iA9PV35oiIACA0NRZ8+fQQLjoiIiAxPp2QAAJydneHs7KxS1qJFC70DIiIiMjrT+EIvGJ2TASIioheVqTTvC4VLYBEREYkcWwaIiIjUiK1lgMkAERGRGpHlAkwGiIiI1ImtZYBjBoiIiESOLQNERERqRNYwwGSAiIhIHbsJiIiISFTYMkBERKRGZA0DTAaIiIjUmZmJKxtgNwEREZHIsWWAiIhIDbsJiEREZP/eBVe9Kv+E6EqhMHYEVBbOJiAiIiJRYTJARESkRiIRbtOGTCZD8+bNUb16dTg6OqJ37964cuVKmeckJiZCIpGU2C5fvqzxddnGR0REpMZY3QRJSUkYM2YMmjdvjsLCQkyfPh2dO3fGxYsXUa1atTLPvXLlCmxsbJQ/16pVS+PrMhkgIiJSY6xkYO/evSo/r1+/Ho6Ojjh16hTatm1b5rmOjo6ws7PT6brsJiAiIqqk7t27BwCoUaNGucf6+fnBxcUFoaGhOHTokFbXYcsAERGRGiEbBuRyOeRyuUqZVCqFVCot8zyFQoHIyEi0adMG3t7epR7n4uKC1atXw9/fH3K5HJs2bUJoaCgSExPLbU14RqJQVI4JLk8KjR0BiVFxcaX49TdZYlulTUiV4y+v6bKyMGz9fh8dFKyuXorD+Oijj1TKPvzwQ8yePbvM88aMGYNdu3bh6NGjqFOnjlbX7NGjByQSCXbu3KnR8WwZICIiMqCoqChERkaqlJXXKjBu3Djs3LkThw8f1joRAIBWrVohLi5O4+OZDBAREakRsptAky6BZxQKBcaNG4dvv/0WiYmJcHNz0+maKSkpcHFx0fh4JgNERERqjDWbYMyYMdi8eTO+++47VK9eHRkZGQAAW1tbWFlZAXja0pCWlobY2FgAQExMDBo0aAAvLy/k5+cjLi4OCQkJSEhI0Pi6TAaIiIgqiRUrVgAA2rdvr1K+fv16DBkyBACQnp6O1NRU5b78/HxMmjQJaWlpsLKygpeXF3bt2oWwsDCNr8sBhCRqHECoHw4g1F3l+Mtrugw9gDBgrnZT88qSPCNEsLoMhS0DREREaviiIiIiIhIVtgwQERGpEVnDAJMBIiIidWLrJmAyQEREpEZkuYBuYwZu376NQYMGwdXVFVWqVIG5ubnKRkRERKZDp5aBIUOGIDU1FTNnzoSLi4vomlOIiOjFJrbPNZ2SgaNHj+LIkSNo2rSpwOEQEREZn8hyAd26CerWrYtKslYRERER6UmnZCAmJgZTp07FX3/9JXA4RERExieRSATbTIFO3QQDBgzAo0eP0LBhQ1hbW8PCQnVdyJycHEGCIyIiMgYT+QwXjE7JQExMjMBhEBERkbHolAxEREQIHQcREVGlYSrN+0LROBm4f/8+bGxslP9flmfHlUYul0Mul6uUKcylkEqlmoZDRERkMGJLBjQeQGhvb4/MzEwAgJ2dHezt7Utsz8rLI5PJYGtrq7ItmC/T/S6IiIhIZxq3DBw8eBA1atQAABw6pN97nqOiohAZGalSpjBnqwAREVUOImsY0DwZaNeuncr/P3nyBOfOnUNmZiaKi4u1uqhUWrJL4EmhVlUQEREZjNi6CXQaQLh3714MHjwYWVlZJfZJJBIUFRXpHRgREZGxiCwX0G3RobFjx6J///5IT09HcXGxysZEgIiIyLTo1DKQmZmJyMhIODk5CR0PERGR0Ymtm0CnloHXX38diYmJAodCRERUOUgkwm2mQKeWgaVLl6J///44cuQIfHx8SixHPH78eEGCIyIiIsPTKRnYvHkz9u3bBysrKyQmJqo0p0gkEiYDRERk0sxM5Su9QHRKBmbMmIGPP/4YU6dOhZmZTj0NRERElZbIcgHdxgzk5+djwIABTASIiIheADp9mkdERCA+Pl7oWIiIiCoFiUQi2GYKdOomKCoqQnR0NPbt2wdfX98SAwgXLVokSHBERETGYGYan+GC0SkZOH/+PPz8/AAAv/32m8o+U8mCiIiISiO2zzKdkgF9X1RERERElYdOyQAREdGLTGQNA0wGiIiI1EkgrmyAcwOJiIhEji0DREREajibgIiISOTENpuA3QREREQix5YBIiIiNSJrGGAyQEREpE5sby1kNwEREZHIsWWAiIhIjcgaBpgMEBERqRPbbAImAyRqYvsHL7Sdv90ydggmK6i+g7FDMGl17KUGrV9sfxo4ZoCIiKiSkMlkaN68OapXrw5HR0f07t0bV65cKfe8pKQk+Pv7o2rVqnB3d8fKlSu1ui6TASIiIjVmEolgmzaSkpIwZswYnDhxAgcOHEBhYSE6d+6Mhw8flnrO9evXERYWhuDgYKSkpGDatGkYP348EhISNL4uuwmIiIjUGKuXYO/evSo/r1+/Ho6Ojjh16hTatm373HNWrlyJevXqISYmBgDg6emJ5ORkLFy4EP369dPoumwZICIiMiC5XI779++rbHK5XKNz7927BwCoUaNGqcccP34cnTt3Vinr0qULkpOTUVBQoNF1mAwQERGpkUgkgm0ymQy2trYqm0wmKzcGhUKByMhItGnTBt7e3qUel5GRAScnJ5UyJycnFBYWIisrS6P7ZTcBERGRGiHfWhgVFYXIyEiVMqm0/NkQY8eOxblz53D06NFyj1WfGaVQKJ5bXhomA0RERAYklUo1+vD/r3HjxmHnzp04fPgw6tSpU+axzs7OyMjIUCnLzMxElSpV4OCg2RRWJgNERERqjLUGiUKhwLhx4/Dtt98iMTERbm5u5Z4TGBiI77//XqVs//79CAgIgIWFhUbX5ZgBIiIiNRKJcJs2xowZg7i4OGzevBnVq1dHRkYGMjIy8PjxY+UxUVFRGDx4sPLnUaNG4caNG4iMjMSlS5ewbt06rF27FpMmTdL4ukwGiIiIKokVK1bg3r17aN++PVxcXJRbfHy88pj09HSkpqYqf3Zzc8Pu3buRmJiIpk2bYs6cOViyZInG0woBdhMQERGVYMxugvJs2LChRFm7du1w+vRpna/LZICIiEiNkLMJTIEgyUBeXh6Ki4thY2MjRHVERERGJbaXmOk1ZuDixYsICAiAjY0N7O3t4ePjg1OnTgkVGxEREVUAvZKBkSNHYuzYscjLy0N2djb69u2rMsKRiIjIFEkE3EyBVslAr169kJaWpvz5zp076NmzJ6ytrWFnZ4ewsDDcvn1b8CCJiIgqkrHeWmgsWiUDb731FkJCQrBkyRIoFAqMHTsWXl5eeOONN9CvXz907doVEyZMMFCoREREZAhaJQPh4eH49ddfceHCBbRs2RKtW7fG/v370bp1awQHB2P//v2YMWOGoWIlIiKqEMZadMhYtJ5NYGdnh1WrVuHo0aOIiIhAp06dMGfOHFhbWxsiPiIiogrH2QTlyM3NxalTp5QzB6pXrw4/Pz/s2rXLEPERERGRgWmVDMTHx6N27dro3r076tevjz179mD27Nn47rvvEB0djfDwcA4gJCIikye2bgKtkoEpU6Zg3bp1yMjIwE8//YSZM2cCAF599VUkJSWhY8eOCAwMNEigREREFYWzCcrw4MEDeHh4AAAaNmyIR48eqewfMWIETpw4IVx0REREZHBaDSCMiIhA9+7d0b59eyQnJ2PQoEEljnF0dBQsOCIiImMwkS/0gtEqGVi0aBFCQkJw+fJlDBkyBJ07d9bponK5HHK5XKVMYS6FVCrVqT4iIiIhcTZBOXr06IEPPvhA50QAAGQyGWxtbVW2BfNlOtdHREQkJDMBN1Og11sLCwoKsGvXLly7dg0uLi7o06cPqlWrVu55UVFRiIyMVClTmLNVgIiIyBi0SgaCgoKwe/du2NnZ4c6dOwgNDcWVK1dQv3593Lx5E9OnT8exY8dQu3btMuuRSkt2CTwp1D54IiIiQ2A3QRlOnDiB/Px8AMD06dNhbm6OGzdu4OrVq/j7779Rp04dzJo1yyCBEhERVRQziXCbKdC5OyMpKQlz586Fs7MzAMDBwQHz5s3DwYMHBQuOiIiIDE/rMQPPmk7u3r0LNzc3lX1ubm5IT08XJjIiIiIjMZVv9ELROhkYMmQIpFIpCgoKcOPGDTRu3Fi5Lz09HXZ2dkLGR0REVOHENmZA60WHnunVqxfy8vJU9ickJKBp06aCBEZEREQVQ6tkYP369WXunz17NszNzfUKiIiIyNjYTaAHTdYYICIiquxE1kug/WyCx48f4+jRo7h48WKJfU+ePEFsbKwggREREVHF0CoZuHr1Kjw9PdG2bVv4+Pigffv2KrMH7t27h6FDhwoeJBERUUXiK4zLMGXKFPj4+CAzMxNXrlyBjY0NWrdujdTUVEPFR0REVOH4boIyHDt2DD/++CNq1qyJmjVrYufOnRgzZgyCg4Nx6NAhjhkgIqIXgol8oReMVsnA48ePUaWK6inLli2DmZkZ2rVrh82bNwsaHBERERmeVsnAq6++iuTkZHh6eqqUf/HFF1AoFOjZs6egwRERERmDqfT1C0Wr7ow+ffpgy5Ytz923dOlSDBw4EAqFQpDAiIiIjEUiEW4zBRJFJfn05iuMyRgqx2+/6fr+wi1jh2Cyguo7GDsEk1bHXmrQ+mftuyZYXR93eVmwugxF0EWHiIiIXgRcgZCIiEjkOGaAiIiIRIUtA0RERGpE1jDAZICIiEid2MYMsJuAiIhI5NgyQEREpEYCcTUNMBkgIiJSw24CIiIikTOTCLdp4/Dhw+jRowdcXV0hkUiwY8eOMo9PTEyERCIpsV2+fFmr67JlgEStmEsQ6iX0ZUdjh2CyxNYMTZp5+PAhmjRpgqFDh6Jfv34an3flyhXY2Ngof65Vq5ZW12UyQEREpEZipLmF3bp1Q7du3bQ+z9HREXZ2djpfl90EREREaozVTaArPz8/uLi4IDQ0FIcOHdL6fLYMEBERGZBcLodcLlcpk0qlkEr1f9mSi4sLVq9eDX9/f8jlcmzatAmhoaFITExE27ZtNa6HyQAREZEaIXsJZDIZPvroI5WyDz/8ELNnz9a7bg8PD3h4eCh/DgwMxM2bN7Fw4UImA0RERPoQ8kVFUVFRiIyMVCkTolWgNK1atUJcXJxW5zAZICIiMiChugQ0lZKSAhcXF63OYTJARESkxliLDuXl5eH3339X/nz9+nWcOXMGNWrUQL169RAVFYW0tDTExsYCAGJiYtCgQQN4eXkhPz8fcXFxSEhIQEJCglbXZTJARESkxlhvLUxOTkZISIjy52fdCxEREdiwYQPS09ORmpqq3J+fn49JkyYhLS0NVlZW8PLywq5duxAWFqbVdSUKReVYdeVJobEjIDEqKq4Uv/4m60lBkbFDMFlcdEg/NaqZG7T+L36+Llhd41q7CVaXobBlgIiISI2ZyJI1JgNERERqjNVNYCxMBoiIiNTwrYVEREQkKoK0DOTl5aG4uFjljUlERESmSshFh0yBXi0DFy9eREBAAGxsbGBvbw8fHx+cOnVKqNiIiIiMQiIRbjMFeiUDI0eOxNixY5GXl4fs7Gz07dsXgwcPFio2IiIiqgBaJQO9evVCWlqa8uc7d+6gZ8+esLa2hp2dHcLCwnD79m3BgyQiIqpIZhKJYJsp0GrMwFtvvYWQkBCMHTsW48aNw9ixY+Hl5YV27dqhoKAABw8exPvvv2+oWImIiCqEiXyGC0brFQjv3r2LKVOmICUlBatWrUKVKlWQmJiIoqIitG7dGs2bN9cpEK5ASMbAFQj1wxUIdccVCPVj6BUI151MLf8gDb3TvJ5gdRmK1rMJ7OzssGrVKhw9ehQRERHo1KkT5syZA2tra0PER0REVOHENu9e6/vNzc3FqVOnlDMHqlevDj8/P+zatcsQ8REREVU4iUQi2GYKtEoG4uPjUbt2bXTv3h3169fHnj17MHv2bHz33XeIjo5GeHg4BxASERGZGK2SgSlTpmDdunXIyMjATz/9hJkzZwIAXn31VSQlJaFjx44IDAw0SKBEREQVRSLgZgq0SgYePHgADw8PAEDDhg3x6NEjlf0jRozAiRMnhIuOiIjICDi1sAwRERHo3r072rdvj+TkZAwaNKjEMY6OjuXWI5fLIZfLVcoU5lJIpVJtwiEiIjII0/gIF45WLQOLFi3CqlWr4Ofnh6VLl2LWrFk6XVQmk8HW1lZlWzBfplNdREREpB+t1xkQAlsGqLLgOgP64ToDuuM6A/ox9DoDm0//LVhdbzarI1hdhqL1OgMPHz7E5s2bcezYMWRkZEAikcDJyQmtW7fGwIEDUa1atXLrkEpLfvBz0SEiIqosTGVKoFC06ia4ePEiXnnlFUyePBm5ubmoV68e6tSpg9zcXHzwwQfw8PDAxYsXDRUrERERGYBW3QQhISFwdnbGxo0bYWlpqbIvPz8fQ4YMQXp6Og4dOqR1IGwZIGNgN4F+2E2gO3YT6MfQ3QTxKWnlH6ShAX61BavLULTqJvjll1+QnJxcIhEAAEtLS0ybNg0tWrQQLDgiIiJjYDdBGezt7XHt2rVS9//++++wt7fXOygiIiKqOFq1DAwfPhwRERGYMWMGOnXqBCcnJ0gkEmRkZODAgQP45JNPMGHCBAOFSkREVDHE1S6gZTIwe/ZsWFlZYdGiRZg8ebKyGUWhUMDZ2RlTp07F5MmTDRIoERFRRRFbN4HO6wxcv34dGRkZAABnZ2e4ubnpFQgHEJIxcAChfjiAUHccQKgfQw8g3H42XbC6Xm/iIlhdhqL1OgPPuLm5wc7ODhs3bsS1a9fg6uqKwYMHo27dukLGR0REVOG0GlD3AtDqfl1dXZGdnQ3gacuAl5cX5s+fj2vXrmHlypXw8fHB5cuXDRIoERFRRZFIJIJtpkCrZCAjIwNFRU+bBadNmwYPDw/88ccf2L9/P37//XcEBwcrX2tMRERkqvgKYw398ssvmDlzJqytrQE8XWJ4xowZfIUxERGRidF6zMCzJg+5XA4nJyeVfU5OTrhz544wkRERERmJibTuC0brZCA0NBRVqlTB/fv3cfXqVXh5eSn3paamombNmoIGSEREVNHMTKaBXxhaJQMffvihys/Pugie+f777xEcHKx/VERERFRhdF5nQGhcZ4CMgesM6IfrDOiO6wzox9DrDPzw223B6nrN26n8g4xM53UGiIiIXlRiS9bEtq4CERERqWHLABERkRrOJiAiIhI5sc0mYDcBERGRyLFlgIiISA27CYiIiERObMkAuwmIiIjUSAT8TxuHDx9Gjx494OrqColEgh07dpR7TlJSEvz9/VG1alW4u7tj5cqVWt8vkwEiIqJK4uHDh2jSpAmWLl2q0fHXr19HWFgYgoODkZKSgmnTpmH8+PFISEjQ6rrsJiBRMzcTWVugwKwt+SdEVw+eFBg7BBNn2BUIjfWnoVu3bujWrZvGx69cuRL16tVDTEwMAMDT0xPJyclYuHAh+vXrp3E9/JdMRESkRsgVCOVyOeRyuUqZVCqFVCrVu+7jx4+jc+fOKmVdunTB2rVrUVBQAAsLC43qYTcBERGRAclkMtja2qpsMplMkLozMjLg5KT67gMnJycUFhYiKytL43rYMkBERKRGyNkEUVFRiIyMVCkTolXgGYlasM/eP6heXhYmA0RERGqE7CYQqkvgeZydnZGRkaFSlpmZiSpVqsDBwUHjethNQEREZKICAwNx4MABlbL9+/cjICBA4/ECAJMBIiKiEswkwm3ayMvLw5kzZ3DmzBkAT6cOnjlzBqmpqQCedjkMHjxYefyoUaNw48YNREZG4tKlS1i3bh3Wrl2LSZMmaXVddhMQERGpEbKbQBvJyckICQlR/vxsrEFERAQ2bNiA9PR0ZWIAAG5ubti9ezcmTpyIZcuWwdXVFUuWLNFqWiEASBTPRhoY2ZNCY0dARNqqHH89TBPXGdCPY3XNm8B1ceRqrmB1Bb9iL1hdhsKWASIiIjViezcBkwEiIiI1IssFmAwQERGpMxNZ0wBnExAREYkcWwaIiIjUiKtdQKBkIC8vD8XFxbCxsRGiOiIiIuMSWTagVzfBxYsXERAQABsbG9jb28PHxwenTp0SKjYiIiKqAHolAyNHjsTYsWORl5eH7Oxs9O3bV2VlJCIiIlMkEfA/U6BVMtCrVy+kpaUpf75z5w569uwJa2tr2NnZISwsDLdv3xY8SCIioookkQi3mQKtkoG33noLISEhWLJkCRQKBcaOHQsvLy+88cYb6NevH7p27YoJEyYYKFQiIiIyBK2XI7579y6mTJmClJQUrFq1ClWqVEFiYiKKiorQunVrNG/eXKdAuBwxkenhcsS643LE+jH0csQn/7wnWF3N3W0Fq8tQdH43wdGjR/Hee++hU6dOmDNnDqytrfUKhMkAkelhMqA7JgP6MXgycF3AZMCt8icDWg8gzM3NxalTp5QzB6pXrw4/Pz/s2rXLEPERERGRgWmVDMTHx6N27dro3r076tevjz179mD27Nn47rvvEB0djfDwcA4gJCIik8fZBGWYMmUK1q1bh4yMDPz000+YOXMmAODVV19FUlISOnbsiMDAQIMESkREVFE4m6AMDx48gIeHBwCgYcOGePTokcr+ESNG4MSJE8JFR0REZAQSATdToNVyxBEREejevTvat2+P5ORkDBo0qMQxjo6O5dYjl8shl8tVyhTmUkilUm3CISIiIgFo1TKwaNEirFq1Cn5+fli6dClmzZql00VlMhlsbW1VtgXzZTrVRUREJDiRNQ3oPLVQH2wZIHoxcGqh7ji1UD+GnlqYcuOBYHX51a8uWF2GotdbCwsKCrBr1y5cu3YNLi4u6NOnD6pVq1bueVJpyQ9+rjNARERkHFp1EwQFBeHu3bsAnr6XwN/fHwMGDMCaNWswfPhwNG7cWOXdBURERKaIswnKcOLECeTn5wMApk+fDnNzc9y4cQNXr17F33//jTp16ug8joCIiKiyENmQAd1fYZyUlIS5c+fC2dkZAODg4IB58+bh4MGDggVHREREhqf1mAHJP20ed+/ehZubm8o+Nzc3pKenCxMZERGRsZjKV3qBaJ0MDBkyBFKpFAUFBbhx4wYaN26s3Jeeng47Ozsh4yMiIqpwprKMsFC0SgYGDx6sbBno1asX8vLyVPYnJCSgadOmggVHREREhifoOgMPHz6Eubk5qlatqvW5nFpIZHq4zoDuuM6Afgy9zsD5v/PKP0hDPnVeEqwuQ9FqAOG4ceNw5MiRUvdXq1ZNp0SAiIioMhHbbAKtWgbMzMwgkUjQsGFDDBs2DBEREcrZBPpiywCR6WHLgO7YMqAfQ7cM/JYmXMuAd+0XrGUAAPbv34+wsDAsXLgQ9erVQ69evfDDDz+guLjYEPERERGRgWmdDPj4+CAmJga3bt1CXFwc5HI5evfujbp162L69On4/fffDREnERFRhZEI+J8p0LqbICMjo8RrilNTU7Fu3Tps2LABN2/eRFFRkdaBsJuAyPSwm0B37CbQj6G7CS7eeihYXY1dy39nj7HpvALhf9WrVw+zZ8/G9evXsXfvXiGqJCIiogqi1ToD9evXh7m5ean7JRIJOnXqpHdQRERExmQajfvC0SoZuH79uqHiICIiqjxElg0I0k1AREREpkvrdxMQERG96ExlFoBQmAwQERGpkYgrF2A3ARERkdixZYCIiEiNyBoGmAwQERGVILJsgN0EREREaoy5HPHy5cvh5uaGqlWrwt/fv8y3BScmJkIikZTYLl++rNU1mQwQERFVEvHx8ZgwYQKmT5+OlJQUBAcHo1u3bkhNTS3zvCtXriA9PV25vfzyy1pdV6t3ExjSYy7TrTOxjXoVkn3zscYOwaTlnlxq7BBMVuX4y2u6rAz7agL8nvlYsLoaOVppfGzLli3RrFkzrFixQlnm6emJ3r17QyaTlTg+MTERISEhyM3NhZ2dnc4xsmWAiIhIjUTATS6X4/79+yqbXC4vcc38/HycOnUKnTt3Vinv3Lkzjh07Vma8fn5+cHFxQWhoKA4dOqT1/TIZICIiMiCZTAZbW1uV7Xnf8rOyslBUVAQnJyeVcicnJ2RkZDy3bhcXF6xevRoJCQn45ptv4OHhgdDQUBw+fFirGDmbgIiISJ2A3a9RUVGIjIxUKZNKpaVfWq3vV6FQlCh7xsPDAx4eHsqfAwMDcfPmTSxcuBBt27bVOEYmA0RERGqEXI5YKpWW+eH/TM2aNWFubl6iFSAzM7NEa0FZWrVqhbi4OK1iZDcBERFRJWBpaQl/f38cOHBApfzAgQMICgrSuJ6UlBS4uLhodW22DBAREakx1iytyMhIDBo0CAEBAQgMDMTq1auRmpqKUaNGAXja5ZCWlobY2FgAQExMDBo0aAAvLy/k5+cjLi4OCQkJSEhI0Oq6TAaIiIjUGGvG9oABA5CdnY2PP/4Y6enp8Pb2xu7du1G/fn0AQHp6usqaA/n5+Zg0aRLS0tJgZWUFLy8v7Nq1C2FhYVpdl+sMvAC4zoDuuM6AfrjOgO4qx19e02XodQb+ynoiWF0NalYVrC5DYcsAERGROpF9yWIyQEREpEbI2QSmgMkAERGRGrF1v3JqIRERkcixZYCIiEiNyBoGmAwQERGpYzeBBtauXfvc8sLCQkRFRekVEBEREVUsnZKB999/H/369UNOTo6y7PLly2jRogW+/vprwYIjIiIyDiFfYlz56ZQMpKSk4Pbt2/Dx8cGBAwewbNkyNGvWDN7e3jhz5ozAIRIREVUsiUS4zRToNGbAzc0Nhw8fxsSJE9G1a1eYm5sjNjYWb7zxhtDxERERkYHpPLXwhx9+wJYtWxAUFAQ7OzusWbMGt27dEjI2IiIioxBXJ4GOycDIkSMRHh6OyZMn4/Dhwzh37hykUil8fHw4ZoCIiEweuwk08PPPP+OXX35BkyZNAADOzs7YvXs3li1bhnfeeQfh4eGCBklERESGo1MycOrUKUil0hLlY8aMQceOHfUOioiIyJj4bgINPC8ReMbDw0PnYIiIiCoFceUCuq9AuH37dnz99ddITU1Ffn6+yr7Tp0/rHRgREZGxiCwX0G0A4ZIlSzB06FA4OjoiJSUFLVq0gIODA/78809069ZN6BiJiIjIgHRqGVi+fDlWr16NgQMHYuPGjZg8eTLc3d0xa9YslVUJSyOXyyGXy1XKis2kZXY/EBERVRRTmQUgFJ1aBlJTUxEUFAQAsLKywoMHDwAAgwYNwpYtW8o9XyaTwdbWVmVbMF+mSyhERESCkwj4nynQKRlwdnZGdnY2AKB+/fo4ceIEAOD69etQKBTlnh8VFYV79+6pbB9M4QuOiIiIjEGnboIOHTrg+++/R7NmzTBs2DBMnDgR27dvR3JyMvr27Vvu+VJpyS6BxwW6REJERGQApvGFXjAShSZf5dUUFxejuLgYVao8zSW2bduGI0eOoFGjRhg9ejQsLCy0DoTJgO7E1rclJPvmY40dgknLPbnU2CGYLO3/8tJ/WWn/MaOVrLxCweqq+ZLOE/cqjE4RmpmZIT8/H6dPn0ZmZiakUqlysaG9e/eiR48eggZJREREhqNTMrB3714MGjRIOW7gvyQSCYqKivQOjIiIyFjE1uKq0wDCsWPHIjw8HOnp6coug2cbEwEiIjJ1nE2ggczMTERGRsLJyUnoeIiIiKiC6ZQMvP7660hMTBQ4FCIiosqBrzDWwNKlS9G/f38cOXIEPj4+JWYPjB8/XpDgiIiIyPB0SgY2b96Mffv2wcrKComJiZD8J/WRSCRMBoiIyKSZyjd6oeiUDMyYMQMff/wxpk6dCjMznXoaiIiIqJLQKRnIz8/HgAEDmAgQEdELyVRmAQhFp0/ziIgIxMfHCx0LERFRpcABhBooKipCdHQ09u3bB19f3xIDCBctWiRIcERERGR4OiUD58+fh5+fHwDgt99+U9knMZU0iIiIqBRi+yTTKRk4dOiQ0HEQERFVHiLLBjgCkIiISOQq/3sViYiIKpjYZhMwGSAiIlIjtuFv7CYgIiISObYMEBERqRFZwwCTASIiohJElg0wGSAiIlIjtgGEHDNAREQkcmwZICIiUiO22QQShUKhMHYQlZlcLodMJkNUVBSkUqmxwzE5fH6647PTHZ+dfvj8xIfJQDnu378PW1tb3Lt3DzY2NsYOx+Tw+emOz053fHb64fMTH44ZICIiEjkmA0RERCLHZICIiEjkmAyUQyqV4sMPP+QgGh3x+emOz053fHb64fMTHw4gJCIiEjm2DBAREYkckwEiIiKRYzJAREQkckwGiCqp9u3bY8KECcYOg4hEgAMIiSqpnJwcWFhYoHr16sYOhYhecEwGiIiIRI7dBGXYu3cv2rRpAzs7Ozg4OOC1117DH3/8YeywTIJCoUB0dDTc3d1hZWWFJk2aYPv27cYOy6Swm6B0crkc48ePh6OjI6pWrYo2bdrg5MmTAIDExERIJBLs27cPfn5+sLKyQocOHZCZmYk9e/bA09MTNjY2GDhwIB49emTkO6kcvv/+e9jZ2aG4uBgAcObMGUgkEnzwwQfKY0aOHImBAwcaK0QyMCYDZXj48CEiIyNx8uRJ/PTTTzAzM0OfPn2U/2CodDNmzMD69euxYsUKXLhwARMnTsTbb7+NpKQkY4dGL4DJkycjISEBGzduxOnTp9GoUSN06dIFOTk5ymNmz56NpUuX4tixY7h58ybCw8MRExODzZs3Y9euXThw4AC++OILI95F5dG2bVs8ePAAKSkpAICkpCTUrFlT5d9rYmIi2rVrZ6wQydAUpLHMzEwFAMX58+eNHUqllpeXp6hatari2LFjKuXDhg1TDBw40EhRmZ527dop/ve//xk7jEonLy9PYWFhofjqq6+UZfn5+QpXV1dFdHS04tChQwoAih9//FG5XyaTKQAo/vjjD2XZyJEjFV26dKnQ2CuzZs2aKRYuXKhQKBSK3r17K+bNm6ewtLRU3L9/X5Genq4AoLh06ZKRoyRDYctAGf744w+8+eabcHd3h42NDdzc3AAAqampRo6scrt48SKePHmCTp064aWXXlJusbGx7GYhvf3xxx8oKChA69atlWUWFhZo0aIFLl26pCzz9fVV/r+TkxOsra3h7u6uUpaZmVkxQZuA9u3bIzExEQqFAkeOHEGvXr3g7e2No0eP4tChQ3BycsKrr75q7DDJQKoYO4DKrEePHqhbty7WrFkDV1dXFBcXw9vbG/n5+cYOrVJ71o2ya9cu1K5dW2Uf1zonfSn+GfMskUhKlP+3zMLCQvn/EolE5ednZezy+1f79u2xdu1anD17FmZmZmjcuDHatWuHpKQk5ObmsovgBceWgVJkZ2fj0qVLmDFjBkJDQ+Hp6Ync3Fxjh2USGjduDKlUitTUVDRq1Ehlq1u3rrHDIxPXqFEjWFpa4ujRo8qygoICJCcnw9PT04iRmbZn4wZiYmLQrl07SCQStGvXDomJiRwvIAJsGSiFvb09HBwcsHr1ari4uCA1NRVTp041dlgmoXr16pg0aRImTpyI4uJitGnTBvfv38exY8fw0ksvISIiwtghkgmrVq0aRo8ejQ8++AA1atRAvXr1EB0djUePHmHYsGE4e/assUM0Sba2tmjatCni4uKwePFiAE8ThP79+6OgoADt27c3boBkUEwGSmFmZoatW7di/Pjx8Pb2hoeHB5YsWcJ/EBqaM2cOHB0dIZPJ8Oeff8LOzg7NmjXDtGnTjB0avQA+/fRTFBcXY9CgQXjw4AECAgKwb98+2NvbGzs0kxYSEoLTp08r/87Z29ujcePGuHXrFltdXnBcdIiIiEjkOGaAiIhI5JgMEBERiRyTASIiIpFjMkBERCRyTAaIiIhEjskAERGRyDEZICIiEjkmA0RERCLHZICIiEjkmAwQERGJHJMBIiIikWMyQEREJHL/B8rlC5d8GhzYAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.heatmap(np.absolute(A_train.iloc[1:,:]-A_test.iloc[1:,:]),annot=True,cmap='Blues')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "2f5fcc38-f866-4350-b5d1-ba27914a505b",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " MOID | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " mean | \n",
+ " 0.000081 | \n",
+ "
\n",
+ " \n",
+ " std | \n",
+ " -0.000106 | \n",
+ "
\n",
+ " \n",
+ " min | \n",
+ " 0.000000 | \n",
+ "
\n",
+ " \n",
+ " 25% | \n",
+ " 0.000000 | \n",
+ "
\n",
+ " \n",
+ " 50% | \n",
+ " 0.000600 | \n",
+ "
\n",
+ " \n",
+ " 75% | \n",
+ " 0.000700 | \n",
+ "
\n",
+ " \n",
+ " max | \n",
+ " 0.099600 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " MOID\n",
+ "mean 0.000081\n",
+ "std -0.000106\n",
+ "min 0.000000\n",
+ "25% 0.000000\n",
+ "50% 0.000600\n",
+ "75% 0.000700\n",
+ "max 0.099600"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "B_train.iloc[1:,:]-B_test.iloc[1:,:]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "62315497-b84c-4466-a35c-042144607977",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgwAAAGdCAYAAAB+VCt0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHFElEQVR4nO3deVRU5f8H8PewS4kQyKIRAZaiorKkgWFZionhrliGuISikgqaiLiUpuSSmbmimNqilKj5TVwwxRU1CXEBc0MxBVndlWWY3x/+nJq56CxeHBjer849J5957jOfmXOUD59nuRKZTCYDERER0VMY6DoAIiIiqvmYMBAREZFKTBiIiIhIJSYMREREpBITBiIiIlKJCQMRERGpxISBiIiIVGLCQERERCoxYSAiIiKVjHQdwGMPK3QdARER1RZm1fzTq55HuGhjPUhfLNpYulRjEgYiIqIaQ8ICvDJ+I0RERKQSKwxERETKJBJdR1DjMGEgIiJSxikJASYMREREylhhEGAKRURERCqxwkBERKSMUxICTBiIiIiUcUpCgCkUERERqaR1haGyshIXLlxAfn4+KisrFV7r0KHDMwdGRESkM5ySENAqYThy5Ag++ugjXLlyBTKZTOE1iUQCqVQqSnBEREQ6wSkJAa0ShrCwMHh7e2Pbtm1wcHCAhF8sERGRXtMqYTh//jw2btyIJk2aiB0PERGR7nFKQkCrb6Rdu3a4cOGC2LEQERHVDBKJeJee0KrC8Omnn2L8+PHIy8uDu7s7jI2NFV5v1aqVKMERERFRzSCRKa9aVIOBgbAwIZFIIJPJtF70+LBC41uIiKiOMqvmU4TqvTVVtLEeHJwp2li6pNVXnp2dLXYcRERENYceTSWIRauEwcnJSew4iIiIag4uehR4pqJOZmYmcnJyUFZWptDevXv3ZwqKiIiIahatEoZLly6hV69eOHXqlHztAgD5eQw8uIn0XUVFBZYv+Q7btv0PRYWFsGnYEN179MLwsFFVrvEBgIKCfHw9dw4yM08j58oVfDQwGBOjY0SJJ/f6dcz+cgaOHTsCM1NTdO0WiPETJsLYxAQAcO3aPwjwf09w39LlK9HejyezEgmwwiCgVcIwduxYODs7Y/fu3XBxccGxY8dQVFSE8ePHY/78+WLHSFTjfB+/Er/+sgEzZ8+Ba5MmyDx9GtOmRKN+/foYGBxS5T1lZWWweskKocNH4od1a0SLRSqVInzUCFhZWWHNDz/j1s2bmDI5CjKZDNExigu34uLXwNX13/NTGjRoIFocRHrFgGsYlGmVMKSmpmLPnj1o2LAhDAwMYGBggLfeeguxsbEYM2YM0tPTxY6TqEbJyDiBd959Dx3efgcA0Ljxy9ietA1nzpx+4j2NG7+MqOgpAIAtmxOf2G/L5kSsWb0K1/75B40aN8ZHA4MR9OHAJ/ZPPXwQly5ewM4/UmBrawcAGP/ZJEyLmYRPx0bgxRdflPdt0MASNg0bavJRiYgAaHlwk1Qqlf8jZGNjg+vXrwN4tBjy77//Fi86ohrKw8MLx44cweXLj3YM/X32LNLT0+Dn9/YzjZv46y9Y/O03CB8Tgc3/S8KnYyOx5LtF2Lpl8xPvyThxAk2avCZPFgCgffu3UFZWhkylBGZs+Ei84+eDkIEDkLxzxzPFSqTXJAbiXXpCqwpDy5YtcfLkSbi4uKBdu3aYO3cuTExMEBcXBxcXF7FjJKpxhn4Sirt376DnB11haGgIqVSKT8dGoGu3D55p3LjlSzH+s0no1NkfAPDyy464dPECNv6agO49e1V5T1FhIV6ysVFos2jQAMbGxigqLAQAmJubY8LEaLTx8ISBgQQpe/dg4oQIzCwrxQeBPZ4pZiK9xG2VAlolDFOmTMG9e/cAAF9++SU++OAD+Pn5wdraGgkJCSrvLy0tRWlpqUKbzNAUpqam2oRD9Nzt2J6Ebb9vRezcr9GkSROcPZuFeV/FomFD2yf+YFeluLgYeXm5+HxaDL6Y/u/aA6m0Ai/Wrw8AGDXiE/yVlgYAcGjUCJu3bgMASCD8x00mg/wfPSurlxAcMlj+WouW7rh9+zbWrF7FhIGI1KJVwtClSxf5/7u4uCAzMxPFxcWwsrJS68mVsbGx+OKLLxTaYqZOx5Rpn2sTDtFz983XczF02HB0DegGAHjt9abIvX4d8atWaJ0wyCorAQDTvpgJd/fWCq8ZGD4qa06fMQulDx8CAIyMH/31tbaxwamTGQr9b9+6hYqKclhbWz/x/Vq1bo3Nib9qFSuR3tOjqQSxPNM5DBcuXMDFixfRoUMHvPTSS1D3lOno6GhERkYqtMkMWV2g2uPhg4cwUFpFbWhoiMpKjU9al7O2sYGtnR3+uXoV3T6o+iwTOzs7QVvrNm2wKm45Cgry0bChLQDg8OFDMDExQfMWLZ/4fmezsrgAkuhJOCUhoFXCUFRUhP79+2Pv3r2QSCQ4f/48XFxc8Mknn8DS0hJff/31U+83NRVOP/BZElSbvP1OR6yMWw57h0ZwbdIEZ7Oy8MPa79GjVx95n2+/+Rr5+TcwK3auvO1sVhYA4P79eygpKcbZrCwYGxvD9f8fFT9y1KeYE/slXnzxRbT364DysjKcOXMat2/dxqDBQ6qMxcf3Lbi4NkHMpImImDARt2/dwoL5c9C7b3/54uStWzbDyMgIzdyaw8BAgn0pe/Hzjz9gXOSE6vqKiEjPaPXwqUGDBiE/Px+rVq2Cm5sbMjIy4OLigl27diEiIgJnzpzROBAmDFSb3Lt3F0sWfYs9f+xGcXERGtraomvXbhgxcrT8sKSpkyfh+vVriF/zg/y+1i2aCsZq1Kgxtifvkf856ff/Yc338bh08QLq1TPHa6+/joHBIXivU+cnxpN7/TpmffkF/jx6BKamZuja7QOM/ywKJv8fy9Ytm/F9/Epcz70OQwMDOL36KgYGh3D9AtVa1f7wKf95oo31YNdnoo2lS1olDPb29ti5cydat26N+vXryxOG7OxsuLu74+7duxoHwoSBiIjUVe0JQxfxDiF8sFM/KnlafeX37t2Dubm5oL2wsJA7HYiIqPbjokcBrb6RDh06YN26dfI/SyQSVFZWYt68eejYsaNowREREVHNoFWFYd68eXjnnXdw/PhxlJWVYeLEiThz5gyKi4tx6NAhsWMkIiJ6vrhLQkCrCkPz5s2RkZGBtm3bonPnzrh37x569+6N9PR0uLq6ih0jERHR88WjoQW0XjZiZWWFbt264Y033kDl/x848+effwIAuneveg85ERER1U5aJQw7duzAoEGDUFRUJDisSSKRQCqVihIcERGRTnBKQkCrWkl4eDj69euH69evo7KyUuFiskBERLUepyQEtPok+fn5iIyMrPKYWiIiItI/WiUMffv2RUpKisihEBER1RCsMAhoddLj/fv30a9fPzRs2BDu7u4wNjZWeH3MmDEaB8KTHomISF3VftJj92WijfVg60jRxtIlrb7yn3/+GTt37kS9evWQkpKi8EhriUSiVcJARERENZdWCcOUKVMwY8YMTJo0CQYG+lNuISIiAqBXUwli0SphKCsrQ1BQEJMFIiLST9xWKaDVT/yQkBAkJCSIHQsREVHNwEWPAlpVGKRSKebOnYudO3eiVatWgkWPCxYsECU4IiIiqhm0ShhOnToFDw8PAMDp06cVXpOwjENERLUdf5YJaJUw7N27V+w4iIiIagz+8iukP5MrREREVG2q+egLIiKi2ocVBiEmDERERMqYLwhwSoKIiIhUYoWBiIhICackhJgwEBERKWHCIMQpCSIiIlKJFQYiIiIlrDAIMWEgIiJSwoRBiAkDERGRMuYLAlzDQERERCqxwkBERKSEUxJCTBiIiIiUMGEQ4pQEERERqcQKAxERkRJWGISYMBARESlhwiDEKQkiIiJSiRUGIiIiZSwwCDBhICIiUsIpCSFOSRAREZFKTBiIiIiUSCQS0S5NLV26FM7OzjAzM4OXlxcOHDjw1P779u2Dl5cXzMzM4OLiguXLlwv6LFy4EE2bNkW9evXg6OiIiIgIPHz4UKO4mDAQEREp0VXCkJCQgHHjxiEmJgbp6enw8/ND165dkZOTU2X/7OxsBAQEwM/PD+np6Zg8eTLGjBmDxMREeZ+ffvoJkyZNwvTp05GVlYX4+HgkJCQgOjpas+9EJpPJNLqjmjys0HUERERUW5hV8wo822G/iDZWfnx/tfu2a9cOnp6eWLZsmbzNzc0NPXv2RGxsrKB/VFQUtm7diqysLHlbWFgYMjIykJqaCgAIDw9HVlYW/vjjD3mf8ePH49ixYyqrF/+l9ld+8uRJtQdt1aqV2n2JiIj0WWlpKUpLSxXaTE1NYWpqqtBWVlaGtLQ0TJo0SaHd398fhw8frnLs1NRU+Pv7K7R16dIF8fHxKC8vh7GxMd566y38+OOPOHbsGNq2bYtLly4hKSkJISEhGn0OtROGNm3aQCKRQCaTqSyxSKVSjYIgIiKqScTcJREbG4svvvhCoW369On4/PPPFdoKCwshlUphZ2en0G5nZ4e8vLwqx87Ly6uyf0VFBQoLC+Hg4IABAwagoKAAb731FmQyGSoqKjBy5EhBYqKK2msYsrOzcenSJWRnZyMxMRHOzs5YunQp0tPTkZ6ejqVLl8LV1VVh3oRIXyWs/wld/d/FGx7uGNCvN/5KO/7U/sf/PIYB/XrjDQ93BHR5D78krBf02b1rJ3oFBsC7TUv0CgzAH7uTNX7f3cm7EBY6DG+3b4fWLZri7H/KlI9t/CUBwwYHw7etJ1q3aIrbt29r+OmJ9J+Yaxiio6Nx69Ythetp6weUkxVVv6hX1f+/7SkpKZg1axaWLl2Kv/76C5s2bcLvv/+OmTNnavSdqJ0wODk5ya/Zs2dj0aJFGDFiBFq1aoVWrVphxIgRWLhwocYBENU2O7YnYe5XsQgdPhIJG7fA09MLo0aEIvf69Sr7//PPVYweORyenl5I2LgFn4SGYc7sWdi9a6e8T8aJdEycEIEPuvfAr5t+wwfde2Di+HE4eTJDo/d98OA+2nh4YGzEhCfG//DhA/i298Ow0DARvg0iUsXU1BQWFhYKl/J0BADY2NjA0NBQUE3Iz88XVBEes7e3r7K/kZERrK2tAQBTp05FcHAwPvnkE7i7u6NXr16YPXs2YmNjUVlZqfbn0GqXxKlTp+Ds7Cxod3Z2RmZmpjZDEtUaP6z9Hr369EHvvv3g4uqKidExsHewr7JqAAC/JmyAg4MDJkbHwMXVFb379kPP3r2xds1qeZ8ff1iLN318MSx0BJxdXDEsdATatnsTP61bq9H7BnbvibBR4Wjn4/PE+D8eNBjDQoejVevWInwbRPpJF7skTExM4OXlheRkxepicnIyfH19q7zHx8dH0H/Xrl3w9vaGsbExAOD+/fswMFD8cW9oaAiZTAZN9j1olTC4ubnhyy+/VNjDWVpaii+//BJubm7aDElUK5SXlSEr8wx8fN9SaPfxbY+ME+lV3nMy4wR8fNsrtPm290PmmdMoLy9/1OfECcGYvu395GNq875EpD1dbauMjIzEqlWrsHr1amRlZSEiIgI5OTkIC3tUEYyOjsagQYPk/cPCwnDlyhVERkYiKysLq1evRnx8PCZM+LfKGBgYiGXLlmHDhg3Izs5GcnIypk6diu7du8PQ0FDt2LTamLJ8+XIEBgbC0dERrf//t5SMjAxIJBL8/vvv2gxJVCuU3CyBVCqVl/oes7a2QWFhQZX3FBYWwtraRqm/NSoqKnDzZgkaNrT9/z7KY1rLx9TmfYmo9gkKCkJRURFmzJiB3NxctGzZEklJSXBycgIA5ObmKpzJ4OzsjKSkJERERGDJkiVo1KgRFi1ahD59+sj7TJkyBRKJBFOmTMG1a9fQsGFDBAYGYtasWRrFplXC0LZtW2RnZ+PHH3/E2bNnIZPJEBQUhI8++ggvvPCCyvur2mIiMxRuMSGqqURblPSfJ9wI+kA4pqbvS0Ra0uFfq1GjRmHUqFFVvrZmzRpB29tvv42//vrrieMZGRlh+vTpmD59+jPFpVXCsH//fvj6+mL48OEK7RUVFdi/fz86dOjw1Pur2mISM3U6pkz7XJtwiJ4bK0srGBoaorCwUKG9uLhIUEV4zMZGWAUoLi6GkZERGlha/qeP0phFxfIxtXlfItIeE3EhrdYwdOzYEcXFxYL2W7duoWPHjirvr2qLyWdRmh1RSaQLxiYmcGveAkcOH1JoP3L4MFq38ajynlat2+CI0qErqYcPonmLlvJFSa3atMGR1EOCPo/H1OZ9iYjEpFWF4Ull0KKiIrWmJKo64YpHQ1NtERwyBDGTJqJ5y5Zo3doDib8mIDc3F/2CBgAAvv3ma+Tn38Cs2LkAgH5BA7Bh/U+YNycWffr2R0ZGOjYnJmLOvK/lYw78eBCGhnyM1avi0PHd97B3zx84eiQV3//ws9rvCwC3bt5Ebm4uCgryAQCXL2cDeFTBsGnYEABQWFCAwsJCXP3/edAL58/B3PwFODg4yCseRHUdKwxCGiUMvXv3BvDoixw8eLDCD32pVIqTJ08+cesHkb54v2sAbt0sQdyypSgoyEeT117HkuVxaNSoMYBHP5DzcnPl/V9+2RFLlsVh3pxYJKz/CQ1tbRE1OQad/LvI+7Tx8MSceQuw+LuFWPLdIji+4og5879Bq1at1X5fAEjZuwfTpvxbrYuaEAEACBsVjpGjPwUA/PrLBixfuljeZ8iggQCAGV/Gokev3mJ+VUS1FhMGIY0ePjVkyBAAwNq1a9G/f3/Uq1dP/pqJiQleffVVhIaGwsZG8zlVVhiIiEhd1f3wKcfw30Qb6+riHqKNpUsafeXff/89AKBhw4b4/PPPYW5uDgC4fPkytmzZAjc3N62SBSIiIqrZtFr0mJ6ejnXr1gEAbt68iTfffBNff/01evbsqfBITiIiotpIVwc31WRaJwx+fn4AgI0bN8LOzg5XrlzBunXrsGjRIlEDJCIiet6YMAhplTDcv38f9evXB/DozOrevXvDwMAAb775Jq5cuSJqgERERKR7WiUMTZo0wZYtW3D16lXs3LkT/v7+AB49IcvCwkLUAImIiJ43VhiEtEoYpk2bhgkTJuDVV19Fu3bt4PP/T8bbtWsXPDx4iAwREdVuTBiENNpW+V95eXnIzc1F69at5Y/NPHbsGCwsLNCsWTONx+O2SiIiUld1b6t0HrdNtLGyF3YTbSxd0vort7e3h729vUJb27ZtnzkgIiIindOfwoBoqjlHIyIiqn30aSpBLFqtYSAiIqK6hRUGIiIiJawwCDFhICIiUsJ8QYgJAxERkRJWGIS4hoGIiIhUYoWBiIhICQsMQkwYiIiIlHBKQohTEkRERKQSKwxERERKWGAQYsJARESkxMCAGYMyTkkQERGRSqwwEBERKeGUhBATBiIiIiXcJSHEKQkiIiJSiRUGIiIiJSwwCDFhICIiUsIpCSEmDEREREqYMAhxDQMRERGpxAoDERGREhYYhJgwEBERKeGUhBCnJIiIiEglVhiIiIiUsMAgxISBiIhICackhDglQURERCqxwkBERKSEBQYhJgxERERKOCUhxCkJIiIiUokVBiIiIiUsMAgxYSAiIlLCKQkhJgxERERKmC8IabWG4caNGwgODkajRo1gZGQEQ0NDhYuIiIj0i1YVhsGDByMnJwdTp06Fg4MDSzdERKRX+HNNSKuE4eDBgzhw4ADatGkjcjhERES6x3xBSKspCUdHR8hkMrFjIaL/SFj/E7r6v4s3PNwxoF9v/JV2XNchEVEdplXCsHDhQkyaNAmXL18WORwiAoAd25Mw96tYhA4fiYSNW+Dp6YVRI0KRe/26rkMjqhMkEolol76QyLQoFVhZWeH+/fuoqKiAubk5jI2NFV4vLi7WOJCHFRrfQqS3Bg7oB7fmzTFl2hfytp6BXdHx3U4YGzFeh5ER1Qxm1bzH7635B0Qb6+AEP9HG0iWtvvKFCxeKHAYRPVZeVoaszDMY+slwhXYf3/bIOJGuo6iIqK7TKmEICQkROw4i+n8lN0sglUphbW2t0G5tbYPCwgIdRUVUt+jTVIJY1E4Ybt++DQsLC/n/P83jfk9SWlqK0tJShTaZoSlMTU3VDYdI7yn/gyWTyfiPGNFzwr9rQmoverSyskJ+fj4AwNLSElZWVoLrcbsqsbGxaNCggcI1b06s9p+CSI9YWVrB0NAQhYWFCu3FxUWwtrbRUVREVNepXWHYs2cPXnrpJQDA3r17n+lNo6OjERkZqdAmM2R1gQgAjE1M4Na8BY4cPoT3OnWWtx85fBjvvPueDiMjqjtYYBBSO2F4++23Ff7/4cOHOHnyJPLz81FZWanRm5qaCqcfuEuC6F/BIUMQM2kimrdsidatPZD4awJyc3PRL2iArkMjqhM4JSGk1aLHHTt2YNCgQYKSKfDoS5ZKpc8cGFFd9n7XANy6WYK4ZUtRUJCPJq+9jiXL49CoUWNdh0ZUJzBfENLqHIYmTZqgS5cumDZtGuzs7EQJhBUGIiJSV3Wfw9Dx28OijbV3rK9oY+mSVl95fn4+IiMjRUsWiIiIahJOSQhpdTR03759kZKSInIoRERENYNEIt6lL7SqMCxevBj9+vXDgQMH4O7uLjgaesyYMaIER0RERDWDVgnDzz//jJ07d6JevXpISUlRKN1IJBImDEREVKsZ6FNpQCRaJQxTpkzBjBkzMGnSJBgYaDWrQUREVGMxXxDS6qd9WVkZgoKCmCwQERGJbOnSpXB2doaZmRm8vLxw4MDTn5y5b98+eHl5wczMDC4uLli+fLmgz82bNzF69Gg4ODjAzMwMbm5uSEpK0igurX7ih4SEICEhQZtbiYiIajyJRCLapYmEhASMGzcOMTExSE9Ph5+fH7p27YqcnJwq+2dnZyMgIAB+fn5IT0/H5MmTMWbMGCQmJsr7lJWVoXPnzrh8+TI2btyIv//+GytXrkTjxpqd66LVOQxjxozBunXr0Lp1a7Rq1Uqw6HHBggWaDslzGIiISG3VfQ5D12VHRRtr+8h2avdt164dPD09sWzZMnmbm5sbevbsidhY4TOXoqKisHXrVmRlZcnbwsLCkJGRgdTUVADA8uXLMW/ePJw9e1bw81oTWlUYTp06BQ8PDxgYGOD06dNIT0+XXydOnNA6GCIioppAFxWGsrIypKWlwd/fX6Hd398fhw9XfZBUamqqoH+XLl1w/PhxlJeXAwC2bt0KHx8fjB49GnZ2dmjZsiVmz56t8anMWuVoz/rwKSIiorqitLQUpaWlCm1VPVOpsLAQUqlUcCiinZ0d8vLyqhw7Ly+vyv4VFRUoLCyEg4MDLl26hD179mDgwIFISkrC+fPnMXr0aFRUVGDatGlqfw6uWiQiIlIi5sFNsbGxaNCggcJV1fTCv++tWJWQyWRPrVRU1f+/7ZWVlbC1tUVcXBy8vLwwYMAAxMTEKEx7qKOaZ4GIiIhqHwnE21cZHR2NyMhIhTbl6gIA2NjYwNDQUFBNyM/Pf+KjGOzt7avsb2RkBGtrawCAg4MDjI2NYWhoKO/j5uaGvLw8lJWVwcTERK3PwQoDERFRNTI1NYWFhYXCVVXCYGJiAi8vLyQnJyu0Jycnw9e36gdY+fj4CPrv2rUL3t7e8gWO7du3x4ULF1BZWSnvc+7cOTg4OKidLABMGIiIiAQMJOJdmoiMjMSqVauwevVqZGVlISIiAjk5OQgLCwPwqFoxaNAgef+wsDBcuXIFkZGRyMrKwurVqxEfH48JEybI+4wcORJFRUUYO3Yszp07h23btmH27NkYPXq0RrFxSoKIiEiJrp5WGRQUhKKiIsyYMQO5ublo2bIlkpKS4OTkBADIzc1VOJPB2dkZSUlJiIiIwJIlS9CoUSMsWrQIffr0kfdxdHTErl27EBERgVatWqFx48YYO3YsoqKiNIpNq3MYqgPPYSAiInVV9zkMPVYeF22s30K9RRtLl1hhICIiUsJnSQgxYSAiIlLCp1UKcdEjERERqcQKAxERkRIWGISYMBARESnR1S6JmowJAxERkRLmC0Jcw0BEREQqscJARESkhLskhJgwEBERKWG6IMQpCSIiIlKJFQYiIiIl3CUhxISBiIhIiaZPmawLOCVBREREKrHCQEREpIRTEkJMGIiIiJQwXxDilAQRERGpxAoDERGREk5JCDFhICIiUsJdEkKiJAx3795FZWUlLCwsxBiOiIhIp1hhEHqmNQyZmZnw9vaGhYUFrKys4O7ujrS0NLFiIyIiohrimRKGESNGIDw8HHfv3kVRURF69+6NQYMGiRUbERGRTkhEvPSFRglDjx49cO3aNfmfCwoK0L17d5ibm8PS0hIBAQG4ceOG6EESERE9TwYSiWiXvtAoYRg4cCA6duyIRYsWQSaTITw8HC1atMCAAQPQp08fvP/++xg3blw1hUpERES6IpHJZDJNbrh58yaioqKQnp6OFStWwMjICCkpKZBKpWjfvj3eeOMNrQJ5WKHVbUREVAeZVfMev9BfTos21sr+LUUbS5c0/sotLS2xYsUKHDx4ECEhIejcuTNmzpwJc3Pz6oiPiIjoueMuCSGNFz2WlJQgLS1NviOifv368PDwwLZt26ojPiIiIqoBNEoYEhIS0LhxY3Tr1g1OTk7Yvn07Pv/8c/z222+YO3cu+vfvz0WPRCJJWP8Tuvq/izc83DGgX2/8lXZc1yER1RkSiXiXvtAoYYiKisLq1auRl5eHP/74A1OnTgUANGvWDPv27UOnTp3g4+NTLYES1SU7tidh7lexCB0+Egkbt8DT0wujRoQi9/p1XYdGVCdwl4SQRgnDnTt30LRpUwCAq6sr7t+/r/D68OHDceTIEfGiI6qjflj7PXr16YPeffvBxdUVE6NjYO9gj18S1us6NCKqozRKGEJCQtCtWzd89NFHaNu2LYKDgwV9bG1tRQuOqC4qLytDVuYZ+Pi+pdDu49seGSfSdRQVUd3CKQkhjXZJLFiwAB07dsTZs2cxePBg+Pv7a/WmpaWlKC0tVWiTGZrC1NRUq/GI9EnJzRJIpVJYW1srtFtb26CwsEBHURHVLdwlIaTxLonAwEB89tlnWicLABAbG4sGDRooXPPmxGo9HpE+Uv4HSyaT8R8xoufEQMRLXzzT0Rfl5eXYtm0bzp8/DwcHB/Tq1QsvvPCCyvuio6MRGRmp0CYzZHWBCACsLK1gaGiIwsJChfbi4iJYW9voKCoiqus0Sn58fX1x8+ZNAI+eI+Hl5YWgoCCsXLkSoaGhaN68ucKzJp7E1NQUFhYWChenI4geMTYxgVvzFjhy+JBC+5HDh9G6jYeOoiKqWyQSiWiXvtAoYThy5AjKysoAADExMTA0NMSVK1dw7tw5/PPPP3j55Zcxbdq0agmUqC4JDhmCTYkbsXnTRly6eBHzvpqN3Nxc9AsaoOvQiOoEA4l4l77Qekpi3759WLBgAezt7QEA1tbWmDVrFoYMGSJacER11ftdA3DrZgnili1FQUE+mrz2OpYsj0OjRo11HRoR1VEaJwyPyys3b96Es7OzwmvOzs7Izc0VJzKiOi7ow4EI+nCgrsMgqpP0qTIgFo0ThsGDB8PU1BTl5eW4cuUKmjdvLn8tNzcXlpaWYsZHRET03OnT2gOxaJQwhISEyP+/R48euHv3rsLriYmJaNOmjSiBERERUc0hkclkMrEGu3fvHgwNDWFmZqbxvQ8rxIqCiIj0ndkzHQqg2me//y3aWPM+aCraWLok6leuzhkMRERENR1nJIQ0PoTqwYMHOHjwIDIzMwWvPXz4EOvWrRMlMCIiIqo5NEoYzp07Bzc3N3To0AHu7u545513FHZF3Lp1i9sqiYio1uPjrYU0ShiioqLg7u6O/Px8/P3337CwsED79u2Rk5NTXfERERE9d3yWhJBGaxgOHz6M3bt3w8bGBjY2Nti6dStGjx4NPz8/7N27l2sYiIhIL+hRYUA0GiUMDx48gJGR4i1LliyBgYEB3n77bfz888+iBkdEREQ1g0YJQ7NmzXD8+HG4ubkptH/33XeQyWTo3r27qMERERHpgj6tPRCLRtMrvXr1wvr166t8bfHixfjwww8h4rEOREREOiGRiHfpC1EPbnoWPLiJiIjUVd0HN03beV60sWZ0eU20sXSpmr9yIiKi2ocPnxJiwkBERKSEaxiE9GmLKBEREVUTVhiIiIiUsMAgxISBiIhICdcwCHFKgoiIiFRihYGIiEiJBCwxKGPCQEREpIRTEkJMGIiIiJQwYRCqMQlDzThvkoiIiKpSYxIGIiKimkLCfZUCTBiIiIiUcEpCiNsqiYiISCVWGIiIiJRwRkKICQMREZESPnxKiFMSRERENcjSpUvh7OwMMzMzeHl54cCBA0/tv2/fPnh5ecHMzAwuLi5Yvnz5E/tu2LABEokEPXv21DguJgxERERKDCTiXZpISEjAuHHjEBMTg/T0dPj5+aFr167Iycmpsn92djYCAgLg5+eH9PR0TJ48GWPGjEFiYqKg75UrVzBhwgT4+flp85VAIpPVjBMQHpTrOgIiIqot6hlX7/jfHcoWbaxP2zur3bddu3bw9PTEsmXL5G1ubm7o2bMnYmNjBf2joqKwdetWZGVlydvCwsKQkZGB1NRUeZtUKsXbb7+NIUOG4MCBA7h58ya2bNmi0edghYGIiKgalZaW4vbt2wpXaWmpoF9ZWRnS0tLg7++v0O7v74/Dhw9XOXZqaqqgf5cuXXD8+HGUl//7m/iMGTPQsGFDDBs2TOvPwYSBiIhIiQEkol2xsbFo0KCBwlVVtaCwsBBSqRR2dnYK7XZ2dsjLy6syzry8vCr7V1RUoLCwEABw6NAhxMfHY+XKlc/0nXCXBBERkRIxN0lER0cjMjJSoc3U1PQp76345jKZ7KknT1bV/3H7nTt38PHHH2PlypWwsbHRNHQFTBiIiIiUiHnSo6mp6VMThMdsbGxgaGgoqCbk5+cLqgiP2dvbV9nfyMgI1tbWOHPmDC5fvozAwED565WVlQAAIyMj/P3333B1dVXrc3BKgoiIqAYwMTGBl5cXkpOTFdqTk5Ph6+tb5T0+Pj6C/rt27YK3tzeMjY3RrFkznDp1CidOnJBf3bt3R8eOHXHixAk4OjqqHZ8oFYa7d++isrISFhYWYgxHRESkU7o6uCkyMhLBwcHw9vaGj48P4uLikJOTg7CwMACPpjeuXbuGdevWAXi0I2Lx4sWIjIxEaGgoUlNTER8fj/Xr1wMAzMzM0LJlS4X3sLS0BABBuyrPVGHIzMyEt7c3LCwsYGVlBXd3d6SlpT3LkERERDonkYh3aSIoKAgLFy7EjBkz0KZNG+zfvx9JSUlwcnICAOTm5iqcyeDs7IykpCSkpKSgTZs2mDlzJhYtWoQ+ffqI+XUAeMZzGPz8/DBs2DD0798fZWVl+Oabb7Bx40acOXNG47F4DgMREamrus9hWHn0imhjhbZzEm0sXdKowtCjRw9cu3ZN/ueCggJ0794d5ubmsLS0REBAAG7cuCF6kERERM+TgUQi2qUvNFrDMHDgQHTs2BHh4eH49NNPER4ejhYtWuDtt99GeXk59uzZg/Hjx1dXrERERM+FHv2cF43GUxI3b95EVFQU0tPTsWLFChgZGSElJQVSqRTt27fHG2+8oVUgnJIgIiJ1VfeUxOo/q352gzaGvvGKaGPpksa7JCwtLbFixQocPHgQISEh6Ny5M2bOnAlzc/PqiI+IiOi545kDQhp/JyUlJUhLS5PviKhfvz48PDywbdu26oiPqNZI2PATArq8i7ae7viwf2/8lXb8qf2P/3kMH/bvjbae7uj2/nv4NWG9oM/u5J3o3T0Ab3i0RO/uAdizO1nQR533vXTxIsaGh+GtN73g29YDwR/1R27ude0/LJGek0gkol36QqOEISEhAY0bN0a3bt3g5OSE7du34/PPP8dvv/2GuXPnon///lz0SHXSzu1JmPdVLD4JHYkNv26Bh6cXRoeFPvGH8rV/riJ81HB4eHphw69bMOyTMMyJnYXdyTvlfTJOpCNqQgS6BfbAL4m/oVtgD0ycMA6nTmZo9L5Xc3IwZNBHeNXZBau+/wG/JG5F6IhRMDVRffIcEdFjGq1hePXVV/HVV19hwIABSEtLw9ChQ5GR8e8/XnFxcfjqq69w6dIljQPhGgaqzT7+sB/c3JojZtoX8rZegV3R8d1OGBMhXAi8cME87Nu7B5v/t13e9uUX03Du3N9Y91MCAGDi+HG4d+8ulixfJe8zasQwWFg0wFfzFqj9vlETImBkZIRZX80T90MT6VB1r2FYd/yqaGMN8lb/NMWaTKMKw507d9C0aVMAgKurK+7fv6/w+vDhw3HkyBHxoiOqBcrLy5CVeQY+vm8ptL/p2x4ZGelV3nMy4wTe9G2v0Obb3g+ZZ07LH0n7qI/imD7t/ZBxIl3t962srMSB/SlwevVVjBw+DB07+ODjD/thzx+7tf/ARHUAt1UKaZQwhISEoFu3bvjoo4/Qtm1bBAcHC/rY2tqqHEfdZ4MT1QYlJSWQSqV4ydpaod3a2gaFhQVV3lNYWAhra8Unx71kbY2KigrcvFnynz7KY1rLx1TnfYuLi3D//n2sjl8J37f8sCxuNd59rzPGjwvH8T+Paf+hifScRMRLX2iUMCxYsAArVqyAh4cHFi9ejGnTpmn1plU9G3zeHOGzwYlqEzEfSavJmE/r8/ipdO90fA/BgwajWTM3DP1kODq8/Q42/rJBnY9FRARAi22VgYGBCo/J1EZVzwavNOACLKqdrKysYGhoiKLCQoX24uIiQRXhMRsbYfWhpLgYRkZGaNDA8j99lMcslo+pzvtaWVnByMhI8PhaZxdXpP/F574QPYkezSSIRuNtlffu3cPKlSsxZMgQdO3aFQEBARgyZAhWrVqFe/fuqTWGqakpLCwsFC51nhVOVBMZG5vArXkLpKYeUmg/mnoYrVt7VHlPq9ZtcDT1sEJb6uGDaN6iJYyNjeV9jiiNeeTwQbRu46H2+xobm6B5C3dczs5W6HPl8mU4NGqs4Sclqju4rVJIo4QhMzMTr7/+OiZOnIiSkhK88sorePnll1FSUoLPPvsMTZs2RWZmZnXFSlRjBQ8ags2JG7Fl00ZcungR8+bMRm5uLvoGDQAALPrma0yJnijv36//AFzPvY75c2Nx6eJFbNm0EZs3JWLQ4KHyPh99PAhHDh/C9/FxyL50Ed/Hx+HokVQMDA5R+30BYPCQYdi5YzsSN/6CnJwr2PDzj9i/by+CBnz4HL4ZItIXGm2r7NixI+zt7bF27VqYmJgovFZWVobBgwcjNzcXe/fu1TgQbquk2i5hw09YszoehQX5aPLa65gwMRpe3o+OSp8aMwnXr11D/Jof5P2P/3kM8+fG4uKF82hoa4shQ0PRL0jxh3jyrh1Y8t1C/HP1Hzg6OiJ8TATe6+yv9vs+tmXTRsSvikP+jTw4veqMkaM/Rcd3O1XTN0FU/ap7W2VC+jXVndQU5KEf1TyNEgZzc3McP34czZs3r/L106dPo23btoLtlupgwkBEROqq7oThlxPinYTav00j0cbSJY2mJKysrHD+/Pknvn7hwgVYWVk9c1BERERUs2i0SyI0NBQhISGYMmUKOnfuDDs7O0gkEuTl5SE5ORmzZ8/GuHHjqilUIiKi50N/liqKR+PHW8+ZMwfffvst8vLy5Ks/ZTIZ7O3tMW7cOEycOFHFCFXjlAQREamruqckNmbkijZW39YOoo2lSxonDI9lZ2cjLy8PAGBvbw9nZ+dnCoQJAxERqYsJw/On8cFNjzk7O8PS0hJr167F+fPn0ahRIwwaNAiOjvrxkA0iIqq7ND6kqA7Q6Dtp1KgRioqKADyqMLRo0QJz5szB+fPnsXz5cri7u+Ps2bPVEigREdHzwoObhDRKGPLy8iCVSgEAkydPRtOmTXHx4kXs2rULFy5cgJ+fH6ZOnVotgRIRET0vfPiUkNZVl6NHj2Lq1KkwNzcH8Oi45ylTpvDx1kRERHpI4zUMj8srpaWlsLOzU3jNzs4OBQVVP86XiIiottCjmQTRaJwwvPfeezAyMsLt27dx7tw5tGjRQv5aTk4ObGyqfjofERFRbWGgV5MJ4tAoYZg+fbrCnx9PRzz2v//9D35+fs8eFREREdUoWp/DIDaew0BEROqq7nMYfj99Q7SxPmhpp7pTLaD1OQxERET6SsIpCQGeTUFEREQqscJARESkhLskhJgwEBERKeEuCSFOSRAREZFKrDAQEREp4ZSEEBMGIiIiJUwYhJgwEBERKeG2SiGuYSAiIiKVWGEgIiJSYsACgwATBiIiIiWckhDilAQRERGpxAoDERGREu6SEGLCQEREpIRTEkKckiAiIiKVWGEgIiJSwl0SQkwYiIiIlHBKQohTEkRERKQSKwxERERKuEtCiAkDERGREuYLQkwYiIiIlBiwxCDANQxERESkEisMRERESlhfEBIlYbh79y4qKythYWEhxnBERES6xYxB4JmmJDIzM+Ht7Q0LCwtYWVnB3d0daWlpYsVGRERENcQzJQwjRoxAeHg47t69i6KiIvTu3RuDBg0SKzYiIiKdkIj4n77QKGHo0aMHrl27Jv9zQUEBunfvDnNzc1haWiIgIAA3btwQPUgiIqLnSSIR79IXGiUMAwcORMeOHbFo0SLIZDKEh4ejRYsWGDBgAPr06YP3338f48aNq6ZQiYiISFckMplMpskNN2/eRFRUFNLT07FixQoYGRkhJSUFUqkU7du3xxtvvKFVIA/KtbqNiIjqoHrG1Tv+n5duiTbWGy4NRBtLlzROGB47ePAgRo0ahc6dO2PmzJkwNzd/pkCYMFBtl7DhJ6z9Ph6FBQVwbfIaPouaDE8v7yf2P/7nMXw97ytcvHAeDW1tMXjIJ+gX9KFCn93JO7H0u29x9WoOHB1fQfiYCLzbqbNG79umZdMq339c5GcYPPSTZ/jERLpT7QlDtogJg7N+JAwaL3osKSlBWlqafEdE/fr14eHhgW3btlVHfES1ws7tSZj3VSw+CR2JDb9ugYenF0aHhSI393qV/a/9cxXho4bDw9MLG37dgmGfhGFO7CzsTt4p75NxIh1REyLQLbAHfkn8Dd0Ce2DihHE4dTJDo/fdnXJQ4fp85mxIJBJ06tyl+r4QItI7GlUYEhISMGTIEFhYWODhw4dYt24dunfvjrNnz2LEiBGws7PDd999Bzs7O40DYYWBarOPP+wHN7fmiJn2hbytV2BXdHy3E8ZEjBf0X7hgHvbt3YPN/9sub/vyi2k4d+5vrPspAQAwcfw43Lt3F0uWr5L3GTViGCwsGuCreQu0el8AGDdmFO7fu4e4+LXP9qGJdKi6KwzHs2+LNpa3s36cUaRRhSEqKgqrV69GXl4e/vjjD0ydOhUA0KxZM+zbtw+dOnWCj49PtQRKVFOVl5chK/MMfHzfUmh/07c9MjLSq7znZMYJvOnbXqHNt70fMs+cRnl5+X/6KI7p094PGSfStX7fosJCHNy/Dz1791X/AxLVQdwlIaRRwnDnzh00bfpoPtTV1RX3799XeH348OE4cuSIeNER1QIlJSWQSqV4ydpaod3a2gaFhQVV3lNYWAhraxuFtpesrVFRUYGbN0v+00d5TGv5mNq879atm2Fu/gLe6+Sv/gckqoMkIl76QqOjoUNCQtCtWze88847OH78OIKDgwV9bG1tVY5TWlqK0tJShbZKA1OYmppqEg5RjSJR+lVCJpMJ2lT1V25XZ0xN3ve3zYkI+CCQf9eISGMaVRgWLFiAFStWwMPDA4sXL8a0adO0etPY2Fg0aNBA4Zo3J1arsYh0zcrKCoaGhigqLFRoLy4uElQRHrOxEVYBSoqLYWRkhAYNLP/TR3nMYvmYmr7vX2nHcTk7G71699Po8xHVSSwxCGi8SyIwMBCfffYZ/P21L2lGR0fj1q1bCtdnUdFaj0ekS8bGJnBr3gKpqYcU2o+mHkbr1h5V3tOqdRscTT2s0JZ6+CCat2gJY2NjeZ8jSmMeOXwQrdt4aPW+mzdtRPPmLdC0WTPNPiBRHaTLo6GXLl0KZ2dnmJmZwcvLCwcOHHhq/3379sHLywtmZmZwcXHB8uXLFV5fuXIl/Pz8YGVlBSsrK3Tq1AnHjh3TOK5nepZEeXk5tmzZgnnz5uHHH3/EvXv31LrP1NQUFhYWChdLpFSbBQ8ags2JG7Fl00ZcungR8+bMRm5uLvoGDQAALPrma0yJnijv36//AFzPvY75c2Nx6eJFbNm0EZs3JWLQ4KHyPh99PAhHDh/C9/FxyL50Ed/Hx+HokVQMDA5R+30fu3v3LpJ37UCvPqwuENVkCQkJGDduHGJiYpCeng4/Pz907doVOTk5VfbPzs5GQEAA/Pz8kJ6ejsmTJ2PMmDFITEyU90lJScGHH36IvXv3IjU1Fa+88gr8/f0VHvWgDo22Vfr6+iIpKQmWlpYoKCjAe++9h7///htOTk64evUqbG1tcfjwYTRu3FijIABuq6TaL2HDT1izOh6FBflo8trrmDAxGl7ej04+nRozCdevXUP8mh/k/Y//eQzz58bKD24aMjRUcHBT8q4dWPLdQvxz9R84OjoifEwE3uvsr/b7Prbx1wTMnzMbyXsPon79+tX0DRA9P9W9rfJEzh3Rxmrzivp/59q1awdPT08sW7ZM3ubm5oaePXsiNlY4dR8VFYWtW7ciKytL3hYWFoaMjAykpqZW+R5SqRRWVlZYvHixRg+M1ChhMDAwQF5eHmxtbTF8+HD8+eef2L59O+zt7VFUVITu3bujWbNmiI+PVzuAx5gwEBGRuqo7YcgQMWFoZmciWOhvaipc6F9WVgZzc3P8+uuv6NWrl7x97NixOHHiBPbt2ycYu0OHDvDw8MC3334rb9u8eTP69++P+/fvy6c4/+vOnTuwtbXFr7/+ig8++EDtz6H1lMS+ffvw5Zdfwt7eHsCj7V6zZs3Cnj17tB2SiIhI71S10L+qakFhYSGkUqng8EM7Ozvk5eVVOXZeXl6V/SsqKgSLph+bNGkSGjdujE6dOmn0OTTaVgn8u4Xr5s2bcHZ2VnjN2dkZubm5mg5JRERUs4i4uyE6OhqRkZEKbU9bt1cdW7Qfmzt3LtavX4+UlBSYmZmpjP2/NE4YBg8eDFNTU5SXl+PKlSto3ry5/LXc3FxYWlpqOiQREVGNos3uhiepavqhKjY2NjA0NBRUE/Lz85/4yAV7e/sq+xsZGQkOfps/fz5mz56N3bt3o1WrVhp+Cg2nJAYNGgRbW1s0aNAAPXr0wN27dxVeT0xMRJs2bTQOgoiIqK4zMTGBl5cXkpOTFdqTk5Ph6+tb5T0+Pj6C/rt27YK3t7fC+oV58+Zh5syZ2LFjB7y9n/wU3afR+vHWVbl37x4MDQ01LnMAXPRIRETqq+5Fj6f+uau6k5rcX35R7b4JCQkIDg7G8uXL4ePjg7i4OKxcuRJnzpyBk5MToqOjce3aNaxbtw7Ao22VLVu2xIgRIxAaGorU1FSEhYVh/fr16NOnD4BH0xBTp07Fzz//jPbt/32GzYsvvogXX1Q/No0qDJ9++ulTD5B44YUXtEoWiIiIahJdHfQYFBSEhQsXYsaMGWjTpg3279+PpKQkODk5AXg09f/fMxmcnZ2RlJSElJQUtGnTBjNnzsSiRYvkyQLw6CCosrIy9O3bFw4ODvJr/vz5mn0nmm6rlEgkcHV1xbBhwxASEiLfJfGsWGEgIiJ1VXeF4fQ18SoMLRur/1t8Tabxtspdu3YhICAA8+fPxyuvvIIePXrg999/R2VlZXXER0RERDWAxgmDu7s7Fi5ciOvXr+PHH39EaWkpevbsCUdHR8TExODChQvVEScREdFzo8tnSdRUWp/0+F85OTlYvXo11qxZg6tXr0IqlWocCKckiIhIXdU9JZF5Xb1nI6mjeaMXRBtLl0RJGB6TyWTYvXs3OnfurHEgTBiIiEhdTBieP40ObnJycoKhoeETX5dIJFolC0RERDWJ/kwkiEejhCE7O7u64iAiIqo5mDEIaP3wKSIiIqo7NH6WBBERkb7Tp90NYmHCQEREpOQpD4esszglQURERCqxwkBERKSEBQYhJgxERETKmDEIMGEgIiJSwkWPQlzDQERERCrVmArDS23DdR0CERHVEg/SF1fr+NwlIVRjEgYiIqKagvmCEKckiIiISCVWGIiIiJSxxCDAhIGIiEgJd0kIcUqCiIiIVGKFgYiISAl3SQgxYSAiIlLCfEGIUxJERESkEisMREREylhiEGDCQEREpIS7JISYMBARESnhokchrmEgIiIilVhhICIiUsICgxATBiIiIiWckhDSakoiPj6+yvaKigpER0c/U0BERERU82iVMIwfPx59+vRBcXGxvO3s2bNo27YtfvnlF9GCIyIi0g2JiJd+0CphSE9Px40bN+Du7o7k5GQsWbIEnp6eaNmyJU6cOCFyiERERM+XRCLepS+0WsPg7OyM/fv3IyIiAu+//z4MDQ2xbt06DBgwQOz4iIiIqAbQelvl77//jvXr18PX1xeWlpZYuXIlrl+/LmZsREREOsEJCSGtEoYRI0agf//+mDhxIvbv34+TJ0/C1NQU7u7uXMNARES1HqckhLRKGA4dOoSjR49iwoQJkEgksLe3R1JSEmbMmIGhQ4eKHSOR3hrezw9Zv3+OkiPf4NBPE9Hew/WJfe1tLLBm9mBkbJ6Ke2mLMG9Cn+cYKRHVdVolDGlpaWjdurWgffTo0UhLS3vmoIjqgr7+npj3WR/Mid+JNz/8CofTL2LL4lFwtLeqsr+JsREKS+5gTvxOnDx37TlHS1S3SET8T19olTCYmpo+8bWmTZtqHQxRXTLm43exZksq1mxOxd/ZN/DZ/ET8k1eC0H5+VfbPyS3GhHmJ+Pn3Y7h99+FzjpaojuEiBgGtT3rcuHEjfvnlF+Tk5KCsrEzhtb/++uuZAyPSZ8ZGhvBwc8T873cptP9xJAtvtnbWUVRE9Jge/ZwXjVYVhkWLFmHIkCGwtbVFeno62rZtC2tra1y6dAldu3YVO0YivWNj9SKMjAyRX3xHof1G0R3YWVvoKCoioifTqsKwdOlSxMXF4cMPP8TatWsxceJEuLi4YNq0aQqnPz5JaWkpSktLFdpklVJIDAy1CYeo1pLJFP8skUggU24koudOn3Y3iEWrCkNOTg58fX0BAPXq1cOdO49+SwoODsb69etV3h8bG4sGDRooXBU3uFiS6o7CkruoqJDCzrq+QrvtSy8Kqg5E9Pxx0aOQVgmDvb09ioqKAABOTk44cuQIACA7O1ut346io6Nx69YthcvIzkubUIhqpfIKKdKzruLdN5sptL/7ZjMcycjWUVRERE+m1ZTEu+++i//973/w9PTEsGHDEBERgY0bN+L48ePo3bu3yvtNTU0FOy04HUF1zaIf9yD+y0H4KzMHR09mY1jv9nC0fwmrNh4AAMz4tDsa2TbAJ1N/kN/T6vXGAIAXzE1hY/UiWr3eGGUVUpy9lKeTz0Ckt/SnMCAarRKGuLg4VFZWAgDCwsJgbW2NAwcOIDAwECNHjhQ1QCJ9tXHXX3ipwQuYPLwr7G0scOZCLnp+uhQ5uSUAHh3U5Gj/ksI9RxP+fXy8V/NXMCDgDVy5XoRm3aY/19iJ9B3zBSGJTMsVVg8fPsTJkyeRn58vTx6AR4u2AgMDNR6vnke4NmEQEVEd9CB9cbWOX3i3QrSxbF7U+gSDGkWrT7Fjxw4EBwfL1zH8l0QigVQqfebAiIiIdIW7JIS0WvQYHh6O/v37Izc3F5WVlQoXkwUiIqrtuEtCSKuEIT8/H5GRkbCzsxM7HiIiIqqBtEoY+vbti5SUFJFDISIiqhn4eGshrRY93r9/H/369UPDhg3h7u4OY2NjhdfHjBmjcSBc9EhEROqq7kWPJffFm163MtePYwO0WvT4888/Y+fOnahXrx5SUlIg+U8KJZFItEoYiIiIagp9qgyIRauEYcqUKZgxYwYmTZoEAwOtZjWIiIioFtEqYSgrK0NQUBCTBSIi0kv6tLtBLFr9xA8JCUFCQoLYsRAREdUIXPQopFWFQSqVYu7cudi5cydatWolWPS4YMECUYIjIiKimkGrhOHUqVPw8PAAAJw+fVrhNYk+pVNERFQn8SeZkFYJw969e8WOg4iIqOZgxiDAVYtERESkkn48QouIiEhE3CUhxISBiIhICZfjCXFKgoiIiFRihYGIiEgJCwxCrDAQEREpk4h4aWjp0qVwdnaGmZkZvLy8cODAgaf237dvH7y8vGBmZgYXFxcsX75c0CcxMRHNmzeHqakpmjdvjs2bN2scFxMGIiIiJRIR/9NEQkICxo0bh5iYGKSnp8PPzw9du3ZFTk5Olf2zs7MREBAAPz8/pKenY/LkyRgzZgwSExPlfVJTUxEUFITg4GBkZGQgODgY/fv3x9GjRzX7TrR5vHV14OOtiYhIXdX9eOsH5eKNVc9YdZ/H2rVrB09PTyxbtkze5ubmhp49eyI2NlbQPyoqClu3bkVWVpa8LSwsDBkZGUhNTQUABAUF4fbt29i+fbu8z/vvvw8rKyusX79e7dhYYSAiIlIi5rMkSktLcfv2bYWrtLRU8J5lZWVIS0uDv7+/Qru/vz8OHz5cZZypqamC/l26dMHx48dRXl7+1D5PGvNJasyix+rOFolqm9LSUsTGxiI6Ohqmpqa6DoeoTjET8afj51/G4osvvlBomz59Oj7//HOFtsLCQkilUtjZ2Sm029nZIS8vr8qx8/LyquxfUVGBwsJCODg4PLHPk8Z8ElYYiGqo0tJSfPHFF1X+JkJEtUd0dDRu3bqlcEVHRz+xv/IzmWQy2VOf01RVf+V2TcesSo2pMBAREekjU1NTtaqENjY2MDQ0FPzmn5+fL6gQPGZvb19lfyMjI1hbWz+1z5PGfBJWGIiIiGoAExMTeHl5ITk5WaE9OTkZvr6+Vd7j4+Mj6L9r1y54e3vD2Nj4qX2eNOaTsMJARERUQ0RGRiI4OBje3t7w8fFBXFwccnJyEBYWBuDR9Ma1a9ewbt06AI92RCxevBiRkZEIDQ1Famoq4uPjFXY/jB07Fh06dMCcOXPQo0cP/Pbbb9i9ezcOHjyoUWxMGIhqKFNTU0yfPp0LHonqkKCgIBQVFWHGjBnIzc1Fy5YtkZSUBCcnJwBAbm6uwpkMzs7OSEpKQkREBJYsWYJGjRph0aJF6NOnj7yPr68vNmzYgClTpmDq1KlwdXVFQkIC2rVrp1FsNeYcBiIiIqq5uIaBiIiIVGLCQERERCoxYSAiIiKVmDAQERGRSkwYiKrJ4MGDIZFI5Nuh/mvUqFGQSCQYPHiwvO3q1asYNmwYGjVqBBMTEzg5OWHs2LEoKipSuPedd97BuHHjFP4skUggkUhgamqKxo0bIzAwEJs2baquj0ZEdRATBqJq5OjoiA0bNuDBgwfytocPH2L9+vV45ZVX5G2XLl2Ct7c3zp07h/Xr1+PChQtYvnw5/vjjD/j4+KC4uPip7xMaGorc3FxcuHBB/tz7AQMGYPjw4dX22YiobuE5DETVyNPTE5cuXcKmTZswcOBAAMCmTZvg6OgIFxcXeb/Ro0fDxMQEu3btQr169QAAr7zyCjw8PODq6oqYmBiFx90qMzc3h729PYBHScqbb76JZs2aYejQoejfvz86depUjZ+SiOoCVhiIqtmQIUPw/fffy/+8evVqDB06VP7n4uJi7Ny5E6NGjZInC4/Z29tj4MCBSEhIgKZHpoSEhMDKyopTE0QkCiYMRNUsODgYBw8exOXLl3HlyhUcOnQIH3/8sfz18+fPQyaTwc3Nrcr73dzcUFJSgoKCAo3e18DAAK+//jouX778LOETEQHglARRtbOxsUG3bt2wdu1ayGQydOvWDTY2NmrfX9WjajW5V5v7iIiUscJA9BwMHToUa9aswdq1axWmIwCgSZMmkEgkyMzMrPLes2fPwsrKSqMkAwCkUinOnz8PZ2dnreMmInqMCQPRc/D++++jrKwMZWVl6NKli8Jr1tbW6Ny5M5YuXaqwmwIA8vLy8NNPPyEoKEjjSsHatWtRUlKi8BAaIiJtMWEgeg4MDQ2RlZWFrKwsGBoaCl5fvHgxSktL0aVLF+zfvx9Xr17Fjh070LlzZzRu3BizZs166vj3799HXl4e/vnnHxw9ehRRUVEICwvDyJEj0bFjx+r6WERUhzBhIHpOLCwsYGFhUeVrr732Go4fPw5XV1cEBQXB1dUVw4cPR8eOHZGamoqXXnrpqWOvXLkSDg4OcHV1Ra9evZCZmYmEhAQsXbq0Oj4KEdVBfLw1ERERqcQKAxEREanEhIGIiIhUYsJAREREKjFhICIiIpWYMBAREZFKTBiIiIhIJSYMREREpBITBiIiIlKJCQMRERGpxISBiIiIVGLCQERERCoxYSAiIiKV/g/w8WI+WrD4RAAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "