You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

67 lines
1.6 KiB
Markdown

# Homotopy Continuation in Julia
This is a project for the "Laboratorio Computazionale" exam at the University of Pisa
## Implemented
- Total-degree Homotopy with "Roots of unity" start system
- Euler-Newton predictor-corrector method with adaptive step size
- Homotopy Continuation for all roots of the target system
## TODO
- [x] Parallelization
- ~~Homogenization~~
## Example systems
Here's some tests on 2x2 systems, with the plotted real approximate solutions
$$
\begin{align*}
x^3 + 5x^2 - y - 10 &= 0 \\
2x^2 - y - 10 &= 0 \\
\end{align*}
$$
| Single-threaded | Multi-threaded (nproc=6) |
|-------------------|---------------------------------|
| ![Solution 1](plots/solutions1.png) | ![Multi-threaded Solution 1](plots/solutions1_6.png) |
---
$$
\begin{align*}
x^2 + 2y &= 0 \\
y - 3x^3 &= 0 \\
\end{align*}
$$
| Single-threaded | Multi-threaded (nproc=6) |
|-------------------|---------------------------------|
| ![Solution 2](plots/solutions2.png) | ![Multi-threaded Solution 2](plots/solutions2_6.png) |
$$
\begin{align*}
x^2 + y^2 - 4 &= 0 \\
xy - 1 &= 0 \\
\end{align*}
$$
| Single-threaded | Multi-threaded (nproc=6) |
|-------------------|---------------------------------|
| ![Solution 3](plots/solutions3.png) | ![Multi-threaded Solution 3](plots/solutions3_6.png) |
---
$$
\begin{align*}
x^2 + y^2 - 2 &= 0 \\
xy - 1 &= 0 \\
\end{align*}
$$
| Single-threaded | Multi-threaded (nproc=6) |
|-------------------|---------------------------------|
| ![Solution 4](plots/solutions4.png) | ![Multi-threaded Solution 4](plots/solutions4_6.png) |