|
|
|
# External dependencies
|
|
|
|
using TypedPolynomials
|
|
|
|
using LinearAlgebra
|
|
|
|
using Distributed, ClusterManagers
|
|
|
|
using SharedArrays
|
|
|
|
|
|
|
|
# Local dependencies
|
|
|
|
include("random_poly.jl")
|
|
|
|
include("start-system.jl")
|
|
|
|
include("homotopy.jl")
|
|
|
|
include("euler-newton.jl")
|
|
|
|
include("adapt-step.jl")
|
|
|
|
include("plot.jl")
|
|
|
|
using .RandomPoly
|
|
|
|
using .StartSystem
|
|
|
|
using .Homotopy
|
|
|
|
using .EulerNewton
|
|
|
|
using .AdaptStep
|
|
|
|
using .Plot
|
|
|
|
|
|
|
|
addprocs(SlurmManager(20), partition="production", t="00:30:00")
|
|
|
|
|
|
|
|
function compute_root(H, r, maxsteps=1000)
|
|
|
|
t = 1.0
|
|
|
|
step_size = 0.01
|
|
|
|
x0 = r
|
|
|
|
m = 0
|
|
|
|
steps = 0
|
|
|
|
|
|
|
|
while t > 0 && steps < maxsteps
|
|
|
|
x0 = en_step(H, x0, t, step_size)
|
|
|
|
(m, step_size) = adapt_step(H, x0, t, step_size, m)
|
|
|
|
t -= step_size
|
|
|
|
steps += 1
|
|
|
|
end
|
|
|
|
return (x0, steps)
|
|
|
|
end
|
|
|
|
|
|
|
|
# Main homotopy continuation loop
|
|
|
|
function solve(F, (G, roots)=start_system(F))
|
|
|
|
H = homotopy(F, G)
|
|
|
|
|
|
|
|
sols = SharedArray{ComplexF64,2}(length(roots), length(F))
|
|
|
|
steps = SharedArray{Int64}(length(roots))
|
|
|
|
@sync @distributed for i in eachindex(roots)
|
|
|
|
(solutions, step_array) = compute_root(H, roots[i])
|
|
|
|
sols[i, :] = solutions
|
|
|
|
steps[i] = step_array
|
|
|
|
end
|
|
|
|
|
|
|
|
return (sols, steps)
|
|
|
|
end
|
|
|
|
|
|
|
|
# Input polynomial systems
|
|
|
|
# @polyvar x y
|
|
|
|
# C = [x^3 - y + 5x^2 - 10, 2x^2 - y - 10]
|
|
|
|
# Q = [x^2 + 2y, y - 3x^3]
|
|
|
|
# F = [x*y - 1, x^2 + y^2 - 4]
|
|
|
|
# T = [x*y - 1, x^2 + y^2 - 2]
|
|
|
|
dimension = 2
|
|
|
|
R = random_system(2, 2)
|
|
|
|
println("System: ", R)
|
|
|
|
|
|
|
|
# (sC, stepsC) = solve(C)
|
|
|
|
# (sQ, stepsQ) = solve(Q)
|
|
|
|
# (sF, stepsF) = solve(F)
|
|
|
|
# (sT, stepsT) = solve(T)
|
|
|
|
(sR, stepsR) = solve(R)
|
|
|
|
# converting sR to array of arrays instead of a matrix
|
|
|
|
sR = [sR[i, :] for i in 1:length(sR[:, 1])]
|
|
|
|
|
|
|
|
# println("C: ", stepsC)
|
|
|
|
# println("Q: ", stepsQ)
|
|
|
|
# println("F: ", stepsF)
|
|
|
|
# println("T: ", stepsT)
|
|
|
|
println("R: ", stepsR)
|
|
|
|
|
|
|
|
# sC = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sC)
|
|
|
|
# sQ = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sQ)
|
|
|
|
# sF = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sF)
|
|
|
|
# sT = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sT)
|
|
|
|
sR = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sR)
|
|
|
|
|
|
|
|
vars = variables(R)
|
|
|
|
println("Solutions: ", sR)
|
|
|
|
println("Norms (lower = better): ", [LinearAlgebra.norm([f(vars => s) for f in R]) for s in sR])
|
|
|
|
|
|
|
|
# Plotting the system and the real solutions
|
|
|
|
ENV["GKSwstype"] = "nul"
|
|
|
|
# plot_real(sC, C, 6, 12, "1")
|
|
|
|
# plot_real(sQ, Q, 2, 2, "2")
|
|
|
|
# plot_real(sF, F, 4, 4, "3")
|
|
|
|
# plot_real(sT, T, 4, 4, "4")
|
|
|
|
plot_real(sR, R, 5, 5, "random")
|