|
|
@ -2,7 +2,7 @@
|
|
|
|
using TypedPolynomials
|
|
|
|
using TypedPolynomials
|
|
|
|
using LinearAlgebra
|
|
|
|
using LinearAlgebra
|
|
|
|
using Distributed
|
|
|
|
using Distributed
|
|
|
|
using ClusterManagers
|
|
|
|
using SharedArrays
|
|
|
|
|
|
|
|
|
|
|
|
# Local dependencies
|
|
|
|
# Local dependencies
|
|
|
|
include("random_poly.jl")
|
|
|
|
include("random_poly.jl")
|
|
|
@ -18,10 +18,7 @@ using .EulerNewton
|
|
|
|
using .AdaptStep
|
|
|
|
using .AdaptStep
|
|
|
|
using .Plot
|
|
|
|
using .Plot
|
|
|
|
|
|
|
|
|
|
|
|
# Launch worker processes
|
|
|
|
function compute_root(H, r, maxsteps=1000)
|
|
|
|
addprocs(SlurmManager(40), N=20, t="01:00:00"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
function compute_root(H, r, maxsteps)
|
|
|
|
|
|
|
|
t = 1.0
|
|
|
|
t = 1.0
|
|
|
|
step_size = 0.01
|
|
|
|
step_size = 0.01
|
|
|
|
x0 = r
|
|
|
|
x0 = r
|
|
|
@ -38,16 +35,17 @@ function compute_root(H, r, maxsteps)
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
|
|
# Main homotopy continuation loop
|
|
|
|
# Main homotopy continuation loop
|
|
|
|
function solve(F, (G, roots) = start_system(F))
|
|
|
|
function solve(F, (G, roots)=start_system(F))
|
|
|
|
H=homotopy(F,G)
|
|
|
|
H = homotopy(F, G)
|
|
|
|
|
|
|
|
|
|
|
|
@distributed for r in roots
|
|
|
|
sols = SharedArray{Complex{Float64}}(length(roots))
|
|
|
|
(solutions, step_array) = compute_root(H, r, maxsteps = 1000)
|
|
|
|
steps = SharedArray{Int64}(length(roots))
|
|
|
|
|
|
|
|
@sync @distributed for (i, r) in enumerate(roots)
|
|
|
|
|
|
|
|
(solutions, step_array) = compute_root(H, r)
|
|
|
|
|
|
|
|
sols[i] = solutions
|
|
|
|
|
|
|
|
steps[i] = step_array
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
|
|
# Gather results from worker processes
|
|
|
|
|
|
|
|
sols = fetch(solutions)
|
|
|
|
|
|
|
|
steps = fetch(step_array)
|
|
|
|
|
|
|
|
return (sols, steps)
|
|
|
|
return (sols, steps)
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
|
@ -81,10 +79,10 @@ sR = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sR)
|
|
|
|
|
|
|
|
|
|
|
|
vars = variables(R)
|
|
|
|
vars = variables(R)
|
|
|
|
println("solutions: ", sR)
|
|
|
|
println("solutions: ", sR)
|
|
|
|
println([LinearAlgebra.norm([f(vars=>s) for f in R]) for s in sR])
|
|
|
|
println([LinearAlgebra.norm([f(vars => s) for f in R]) for s in sR])
|
|
|
|
|
|
|
|
|
|
|
|
# Plotting the system and the real solutions
|
|
|
|
# Plotting the system and the real solutions
|
|
|
|
ENV["GKSwstype"]="nul"
|
|
|
|
ENV["GKSwstype"] = "nul"
|
|
|
|
# plot_real(sC, C, 6, 12, "1")
|
|
|
|
# plot_real(sC, C, 6, 12, "1")
|
|
|
|
# plot_real(sQ, Q, 2, 2, "2")
|
|
|
|
# plot_real(sQ, Q, 2, 2, "2")
|
|
|
|
# plot_real(sF, F, 4, 4, "3")
|
|
|
|
# plot_real(sF, F, 4, 4, "3")
|
|
|
|