|
|
|
@ -2,6 +2,7 @@
|
|
|
|
|
using TypedPolynomials
|
|
|
|
|
using LinearAlgebra
|
|
|
|
|
using Distributed
|
|
|
|
|
using ClusterManagers
|
|
|
|
|
|
|
|
|
|
# Local dependencies
|
|
|
|
|
include("random_poly.jl")
|
|
|
|
@ -18,16 +19,9 @@ using .AdaptStep
|
|
|
|
|
using .Plot
|
|
|
|
|
|
|
|
|
|
# Launch worker processes
|
|
|
|
|
num_cores = parse(Int, ENV["SLURM_CPUS_PER_TASK"])
|
|
|
|
|
addprocs(num_cores)
|
|
|
|
|
addprocs(SlurmManager(40), N=20, t="01:00:00"))
|
|
|
|
|
|
|
|
|
|
# Main homotopy continuation loop
|
|
|
|
|
function solve(F, (G, roots) = start_system(F), maxsteps = 1000)
|
|
|
|
|
H=homotopy(F,G)
|
|
|
|
|
solutions = []
|
|
|
|
|
step_array = []
|
|
|
|
|
|
|
|
|
|
@distributed for r in roots
|
|
|
|
|
function compute_root(H, r, maxsteps)
|
|
|
|
|
t = 1.0
|
|
|
|
|
step_size = 0.01
|
|
|
|
|
x0 = r
|
|
|
|
@ -40,14 +34,21 @@ function solve(F, (G, roots) = start_system(F), maxsteps = 1000)
|
|
|
|
|
t -= step_size
|
|
|
|
|
steps += 1
|
|
|
|
|
end
|
|
|
|
|
push!(solutions, x0)
|
|
|
|
|
push!(step_array, steps)
|
|
|
|
|
return (x0, steps)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
# Main homotopy continuation loop
|
|
|
|
|
function solve(F, (G, roots) = start_system(F))
|
|
|
|
|
H=homotopy(F,G)
|
|
|
|
|
|
|
|
|
|
@distributed for r in roots
|
|
|
|
|
(solutions, step_array) = compute_root(H, r, maxsteps = 1000)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
# Gather results from worker processes
|
|
|
|
|
solutions = fetch(solutions)
|
|
|
|
|
step_array = fetch(step_array)
|
|
|
|
|
return (solutions, step_array)
|
|
|
|
|
sols = fetch(solutions)
|
|
|
|
|
steps = fetch(step_array)
|
|
|
|
|
return (sols, steps)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
# Input polynomial systems
|
|
|
|
|