Computational Project about Homotopy Continuation
You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
Francesco Minnocci 23b8ceb8b5
Add more examples, homogenize() and change step function
2 years ago
LICENSE Initial commit 2 years ago
README.md Add more examples, homogenize() and change step function 2 years ago
hc.jl Add more examples, homogenize() and change step function 2 years ago
solutions1.png Add more examples, homogenize() and change step function 2 years ago
solutions2.png Add more examples, homogenize() and change step function 2 years ago
solutions3.png Add more examples, homogenize() and change step function 2 years ago

README.md

Homotopy Continuation in Julia

This is a project for the "Laboratorio Computazionale" exam at the University of Pisa

Implemented

  • Total-degree Homotopy with "Roots of unity" start system
  • Euler-Newton predictor-corrector method with adaptive step size
  • Homotopy Continuation for all roots of the target system

TODO

  • Projective coordinates
  • Parallelization
  • Extract functions in separate modules(?)

Example systems

Here's some tests on 2x2 systems, with the plotted real approximate solutions


\begin{align*}
x^2 + y^2 - 4 &= 0 \\
xy - 1 &= 0 \\
\end{align*}



\begin{align*}
x^2 + y^2 - 2 &= 0 \\
xy - 1 &= 0 \\
\end{align*}



\begin{align*}
x^3 + 5x^2 - y - 10 &= 0 \\
2x^2 - y - 10 &= 0 \\
\end{align*}