You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

126 lines
3.3 KiB
Julia

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

using LinearAlgebra
using TypedPolynomials
using Plots
# Define start system based on total degree
function start_system(F)
degrees = [maxdegree(p) for p in F]
# @polyvar h
# G = [x_i^d - h^d for (d, x_i) in zip(degrees, variables(F))]
G = [x_i^d - 1 for (d, x_i) in zip(degrees, variables(F))]
r = [[exp(2im*pi/d)^k for k=0:d-1] for d in degrees]
# roots = vec([vcat(collect(root), 1) for root in collect(Iterators.product(r...))])
roots = vec([collect(root) for root in collect(Iterators.product(r...))])
return (G, roots)
end
function homogenize(F)
@polyvar h
return [sum([h^(maxdegree(p)-maxdegree(t))*t for t in p.terms]) for p in F]
end
# Define homotopy function
function homotopy(F, G)
γ = cis(2π * rand())
function H(t)
return [(1 - t) * f + γ * t * g for (f, g) in zip(F, G)]
end
return H
end
# Euler-Newton predictor-corrector
function en_step(H, x, t, step_size)
# Predictor step
vars = variables(H(t))
# Jacobian of H evaluated at (x,t)
JH = [jh(vars=>x) for jh in differentiate(H(t), vars)]
# ∂H/∂t is the same as γG-F=H(1)-H(0) for our choice of homotopy
Δx = JH \ -[gg(vars=>x) for gg in H(1)-H(0)]
xp = x .+ Δx * step_size
# Corrector step
for _ in 1:10
JH = [jh(vars=>xp) for jh in differentiate(H(t+step_size), vars)]
Δx = JH \ -[h(vars=>xp) for h in H(t+step_size)]
xp = xp .+ Δx
if LinearAlgebra.norm(Δx) < 1e-6
break
end
end
return xp
end
# Adaptive step size
function adapt_step(x, x_old, step, m)
Δ = LinearAlgebra.norm(x - x_old)
# function adapt_step(H, x, t, step, m)
# Δ = LinearAlgebra.norm([h(variables(H(t))=>x) for h in H(t)])
if Δ > 0.1
step = 0.5 * step
m = 0
else
m+=1
if (m == 5)
step = 2 * step
m = 0
end
end
return (m, step)
end
# Main homotopy continuation loop
function solve(F, (G, roots) = start_system(F), maxsteps=10000)
# F=homogenize(F)
H=homotopy(F,G)
solutions = []
for r in roots
t = 1.0
step_size = 0.01
x0 = r
m = 0
while t > 0 && maxsteps > 0
x = en_step(H, x0, t, step_size)
(m, step_size) = adapt_step(x, x0, step_size, m)
# (m, step_size) = adapt_step(H, x, t, step_size, m)
x0 = x
t -= step_size
maxsteps -= 1
end
push!(solutions, x0)
end
return solutions
end
function plot_real(solutions, F, h, v, name)
p=plot(xlim = (-h, h), ylim = (-v, v), aspect_ratio = :equal)
contour!(-h:0.1:h, -v:0.1:v, (x,y)->F[1](variables(F)=>[x,y]), levels=[0], cbar=false, color=:cyan)
contour!(-h:0.1:h, -v:0.1:v, (x,y)->F[2](variables(F)=>[x,y]), levels=[0], cbar=false, color=:green)
scatter!([real(sol[1]) for sol in solutions], [real(sol[2]) for sol in solutions], color = "red", label = "Real solutions")
png("solutions" * name)
end
# Input polynomial system
@polyvar x y
F = [x*y - 1, x^2 + y^2 - 4]
T = [x*y - 1, x^2 + y^2 - 2]
C = [x^3 - y + 5x^2 - 10, 2x^2 - y - 10]
P = [x*y - 1, x*y]
sF = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, solve(F))
sT = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, solve(T))
sC = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, solve(C))
# sP = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, solve(P))
# Plotting the system and the real solutions
plot_real(sF, F, 4, 4, "1")
plot_real(sT, T, 4, 4, "2")
plot_real(sC, C, 6, 12, "3")
# plot_real(sP, P, 5, 5, "4")