|
|
|
|
using LinearAlgebra
|
|
|
|
|
using TypedPolynomials
|
|
|
|
|
using Plots
|
|
|
|
|
|
|
|
|
|
# Define start system based on total degree
|
|
|
|
|
function start_system(F)
|
|
|
|
|
degrees = [maxdegree(p) for p in F]
|
|
|
|
|
# @polyvar h
|
|
|
|
|
# G = [x_i^d - h^d for (d, x_i) in zip(degrees, variables(F))]
|
|
|
|
|
G = [x_i^d - 1 for (d, x_i) in zip(degrees, variables(F))]
|
|
|
|
|
r = [[exp(2im*pi/d)^k for k=0:d-1] for d in degrees]
|
|
|
|
|
# roots = vec([vcat(collect(root), 1) for root in collect(Iterators.product(r...))])
|
|
|
|
|
roots = vec([collect(root) for root in collect(Iterators.product(r...))])
|
|
|
|
|
return (G, roots)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function homogenize(F)
|
|
|
|
|
@polyvar h
|
|
|
|
|
return [sum([h^(maxdegree(p)-maxdegree(t))*t for t in p.terms]) for p in F]
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
# Define homotopy function
|
|
|
|
|
function homotopy(F, G)
|
|
|
|
|
γ = cis(2π * rand())
|
|
|
|
|
function H(t)
|
|
|
|
|
return [(1 - t) * f + γ * t * g for (f, g) in zip(F, G)]
|
|
|
|
|
end
|
|
|
|
|
return H
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
# Euler-Newton predictor-corrector
|
|
|
|
|
function en_step(H, x, t, step_size)
|
|
|
|
|
|
|
|
|
|
# Predictor step
|
|
|
|
|
vars = variables(H(t))
|
|
|
|
|
# Jacobian of H evaluated at (x,t)
|
|
|
|
|
JH = [jh(vars=>x) for jh in differentiate(H(t), vars)]
|
|
|
|
|
# ∂H/∂t is the same as γG-F=H(1)-H(0) for our choice of homotopy
|
|
|
|
|
Δx = JH \ -[gg(vars=>x) for gg in H(1)-H(0)]
|
|
|
|
|
xp = x .+ Δx * step_size
|
|
|
|
|
|
|
|
|
|
# Corrector step
|
|
|
|
|
for _ in 1:10
|
|
|
|
|
JH = [jh(vars=>xp) for jh in differentiate(H(t+step_size), vars)]
|
|
|
|
|
Δx = JH \ -[h(vars=>xp) for h in H(t+step_size)]
|
|
|
|
|
xp = xp .+ Δx
|
|
|
|
|
if LinearAlgebra.norm(Δx) < 1e-6
|
|
|
|
|
break
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
return xp
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
# Adaptive step size
|
|
|
|
|
function adapt_step(x, x_old, step, m)
|
|
|
|
|
Δ = LinearAlgebra.norm(x - x_old)
|
|
|
|
|
# function adapt_step(H, x, t, step, m)
|
|
|
|
|
# Δ = LinearAlgebra.norm([h(variables(H(t))=>x) for h in H(t)])
|
|
|
|
|
if Δ > 0.1
|
|
|
|
|
step = 0.5 * step
|
|
|
|
|
m = 0
|
|
|
|
|
else
|
|
|
|
|
m+=1
|
|
|
|
|
if (m == 5)
|
|
|
|
|
step = 2 * step
|
|
|
|
|
m = 0
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
return (m, step)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
# Main homotopy continuation loop
|
|
|
|
|
function solve(F, (G, roots) = start_system(F), maxsteps=10000)
|
|
|
|
|
# F=homogenize(F)
|
|
|
|
|
H=homotopy(F,G)
|
|
|
|
|
solutions = []
|
|
|
|
|
|
|
|
|
|
for r in roots
|
|
|
|
|
t = 1.0
|
|
|
|
|
step_size = 0.01
|
|
|
|
|
x0 = r
|
|
|
|
|
m = 0
|
|
|
|
|
|
|
|
|
|
while t > 0 && maxsteps > 0
|
|
|
|
|
x = en_step(H, x0, t, step_size)
|
|
|
|
|
(m, step_size) = adapt_step(x, x0, step_size, m)
|
|
|
|
|
# (m, step_size) = adapt_step(H, x, t, step_size, m)
|
|
|
|
|
x0 = x
|
|
|
|
|
t -= step_size
|
|
|
|
|
maxsteps -= 1
|
|
|
|
|
end
|
|
|
|
|
push!(solutions, x0)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
return solutions
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function plot_real(solutions, F, h, v, name)
|
|
|
|
|
p=plot(xlim = (-h, h), ylim = (-v, v), aspect_ratio = :equal)
|
|
|
|
|
contour!(-h:0.1:h, -v:0.1:v, (x,y)->F[1](variables(F)=>[x,y]), levels=[0], cbar=false, color=:cyan)
|
|
|
|
|
contour!(-h:0.1:h, -v:0.1:v, (x,y)->F[2](variables(F)=>[x,y]), levels=[0], cbar=false, color=:green)
|
|
|
|
|
scatter!([real(sol[1]) for sol in solutions], [real(sol[2]) for sol in solutions], color = "red", label = "Real solutions")
|
|
|
|
|
|
|
|
|
|
png("solutions" * name)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
# Input polynomial system
|
|
|
|
|
@polyvar x y
|
|
|
|
|
F = [x*y - 1, x^2 + y^2 - 4]
|
|
|
|
|
T = [x*y - 1, x^2 + y^2 - 2]
|
|
|
|
|
C = [x^3 - y + 5x^2 - 10, 2x^2 - y - 10]
|
|
|
|
|
P = [x*y - 1, x*y]
|
|
|
|
|
|
|
|
|
|
sF = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, solve(F))
|
|
|
|
|
sT = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, solve(T))
|
|
|
|
|
sC = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, solve(C))
|
|
|
|
|
# sP = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, solve(P))
|
|
|
|
|
|
|
|
|
|
# Plotting the system and the real solutions
|
|
|
|
|
plot_real(sF, F, 4, 4, "1")
|
|
|
|
|
plot_real(sT, T, 4, 4, "2")
|
|
|
|
|
plot_real(sC, C, 6, 12, "3")
|
|
|
|
|
# plot_real(sP, P, 5, 5, "4")
|