!
! MLD2P4 version 2.1
! MultiLevel Domain Decomposition Parallel Preconditioners Package
! based on PSBLAS (Parallel Sparse BLAS version 3.5)
! (C) Copyright 2008, 2010, 2012, 2015, 2017
! Salvatore Filippone Cranfield University, UK
! Ambra Abdullahi Hassan University of Rome Tor Vergata, IT
! Alfredo Buttari CNRS-IRIT, Toulouse, FR
! Pasqua D'Ambra IAC-CNR, Naples, IT
! Daniela di Serafino University of Campania "L. Vanvitelli", Caserta, IT
! Redistribution and use in source and binary forms, with or without
! modification, are permitted provided that the following conditions
! are met:
! 1. Redistributions of source code must retain the above copyright
! notice, this list of conditions and the following disclaimer.
! 2. Redistributions in binary form must reproduce the above copyright
! notice, this list of conditions, and the following disclaimer in the
! documentation and/or other materials provided with the distribution.
! 3. The name of the MLD2P4 group or the names of its contributors may
! not be used to endorse or promote products derived from this
! software without specific written permission.
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
! POSSIBILITY OF SUCH DAMAGE.
subroutine mld_c_jac_smoother_apply(alpha,sm,x,beta,y,desc_data,&
& trans,sweeps,work,info,init,initu)
use psb_base_mod
use mld_c_jac_smoother, mld_protect_name => mld_c_jac_smoother_apply
implicit none
type(psb_desc_type), intent(in) :: desc_data
class(mld_c_jac_smoother_type), intent(inout) :: sm
complex(psb_spk_),intent(inout) :: x(:)
complex(psb_spk_),intent(inout) :: y(:)
complex(psb_spk_),intent(in) :: alpha,beta
character(len=1),intent(in) :: trans
integer(psb_ipk_), intent(in) :: sweeps
complex(psb_spk_),target, intent(inout) :: work(:)
integer(psb_ipk_), intent(out) :: info
character, intent(in), optional :: init
complex(psb_spk_),intent(inout), optional :: initu(:)
integer(psb_ipk_) :: n_row,n_col
complex(psb_spk_), allocatable :: tx(:),ty(:)
complex(psb_spk_), pointer :: aux(:)
integer(psb_ipk_) :: ictxt,np,me,i, err_act
character :: trans_, init_
character(len=20) :: name='c_jac_smoother_apply'
call psb_erractionsave(err_act)
info = psb_success_
if (present(init)) then
init_ = psb_toupper(init)
else
init_='Z'
end if
trans_ = psb_toupper(trans)
select case(trans_)
case('N')
case('T','C')
case default
call psb_errpush(psb_err_iarg_invalid_i_,name)
goto 9999
end select
if (.not.allocated(sm%sv)) then
info = 1121
call psb_errpush(info,name)
n_row = desc_data%get_local_rows()
n_col = desc_data%get_local_cols()
if (4*n_col <= size(work)) then
aux => work(:)
allocate(aux(4*n_col),stat=info)
if (info /= psb_success_) then
info=psb_err_alloc_request_
call psb_errpush(info,name,&
& i_err=(/4*n_col,izero,izero,izero,izero/),&
& a_err='complex(psb_spk_)')
endif
if ((.not.sm%sv%is_iterative()).and.((sweeps == 1).or.(sm%nnz_nd_tot==0))) then
! if .not.sv%is_iterative, there's no need to pass init
call sm%sv%apply(alpha,x,beta,y,desc_data,trans_,aux,info)
call psb_errpush(psb_err_internal_error_,&
& name,a_err='Error in sub_aply Jacobi Sweeps = 1')
else if (sweeps >= 0) then
! Apply multiple sweeps of a block-Jacobi solver
! to compute an approximate solution of a linear system.
call psb_geasb(tx,desc_data,info)
call psb_geasb(ty,desc_data,info)
! Unroll the first iteration and fold it inside SELECT CASE
! this will save one AXPBY and one SPMM when INIT=Z, and will be
! significant when sweeps=1 (a common case)
select case (init_)
case('Z')
call sm%sv%apply(cone,x,czero,ty,desc_data,trans_,aux,info,init='Z')
case('Y')
call psb_geaxpby(cone,x,czero,tx,desc_data,info)
call psb_geaxpby(cone,y,czero,ty,desc_data,info)
call psb_spmm(-cone,sm%nd,ty,cone,tx,desc_data,info,work=aux,trans=trans_)
call sm%sv%apply(cone,tx,czero,ty,desc_data,trans_,aux,info,init='Y')
case('U')
if (.not.present(initu)) then
call psb_errpush(psb_err_internal_error_,name,&
& a_err='missing initu to smoother_apply')
call psb_geaxpby(cone,initu,czero,ty,desc_data,info)
& a_err='wrong init to smoother_apply')
do i=1, sweeps-1
! Compute Y(j+1) = D^(-1)*(X-ND*Y(j)), where D and ND are the
! block diagonal part and the remaining part of the local matrix
! and Y(j) is the approximate solution at sweep j.
if (info /= psb_success_) exit
end do
if (info == psb_success_) call psb_geaxpby(alpha,ty,beta,y,desc_data,info)
info=psb_err_internal_error_
& a_err='subsolve with Jacobi sweeps > 1')
deallocate(tx,ty,stat=info)
& a_err='final cleanup with Jacobi sweeps > 1')
info = psb_err_iarg_neg_
& i_err=(/itwo,sweeps,izero,izero,izero/))
if (.not.(4*n_col <= size(work))) then
deallocate(aux)
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
end subroutine mld_c_jac_smoother_apply