!!$
!!$ MLD2P4 version 2.1
!!$ MultiLevel Domain Decomposition Parallel Preconditioners Package
!!$ based on PSBLAS (Parallel Sparse BLAS version 3.4)
!!$ (C) Copyright 2008, 2010, 2012, 2015, 2017
!!$ Salvatore Filippone Cranfield University
!!$ Ambra Abdullahi Hassan University of Rome Tor Vergata
!!$ Alfredo Buttari CNRS-IRIT, Toulouse
!!$ Pasqua D'Ambra ICAR-CNR, Naples
!!$ Daniela di Serafino University of Campania "L. Vanvitelli", Caserta
!!$ Redistribution and use in source and binary forms, with or without
!!$ modification, are permitted provided that the following conditions
!!$ are met:
!!$ 1. Redistributions of source code must retain the above copyright
!!$ notice, this list of conditions and the following disclaimer.
!!$ 2. Redistributions in binary form must reproduce the above copyright
!!$ notice, this list of conditions, and the following disclaimer in the
!!$ documentation and/or other materials provided with the distribution.
!!$ 3. The name of the MLD2P4 group or the names of its contributors may
!!$ not be used to endorse or promote products derived from this
!!$ software without specific written permission.
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
!!$ POSSIBILITY OF SUCH DAMAGE.
subroutine mld_s_as_smoother_apply_vect(alpha,sm,x,beta,y,desc_data,trans,&
& sweeps,work,info,init,initu)
use psb_base_mod
use mld_s_as_smoother, mld_protect_nam => mld_s_as_smoother_apply_vect
implicit none
type(psb_desc_type), intent(in) :: desc_data
class(mld_s_as_smoother_type), intent(inout) :: sm
type(psb_s_vect_type),intent(inout) :: x
type(psb_s_vect_type),intent(inout) :: y
real(psb_spk_),intent(in) :: alpha,beta
character(len=1),intent(in) :: trans
integer(psb_ipk_), intent(in) :: sweeps
real(psb_spk_),target, intent(inout) :: work(:)
integer(psb_ipk_), intent(out) :: info
character, intent(in), optional :: init
type(psb_s_vect_type),intent(inout), optional :: initu
integer(psb_ipk_) :: n_row,n_col, nrow_d, i
real(psb_spk_), pointer :: aux(:)
type(psb_s_vect_type) :: tx, ty, ww
integer(psb_ipk_) :: ictxt,np,me, err_act,isz,int_err(5)
character :: trans_, init_
character(len=20) :: name='s_as_smoother_apply_v', ch_err
call psb_erractionsave(err_act)
info = psb_success_
ictxt = desc_data%get_context()
call psb_info(ictxt,me,np)
if (present(init)) then
init_ = psb_toupper(init)
else
init_='Z'
end if
trans_ = psb_toupper(trans)
select case(trans_)
case('N')
case('T')
case('C')
case default
call psb_errpush(psb_err_iarg_invalid_i_,name)
goto 9999
end select
if (.not.allocated(sm%sv)) then
info = 1121
call psb_errpush(info,name)
n_row = sm%desc_data%get_local_rows()
n_col = sm%desc_data%get_local_cols()
nrow_d = desc_data%get_local_rows()
isz = max(n_row,N_COL)
if (4*isz <= size(work)) then
aux => work(:)
allocate(aux(4*isz),stat=info)
if (info /= psb_success_) then
call psb_errpush(psb_err_alloc_request_,name,&
& i_err=(/4*isz,izero,izero,izero,izero/),&
& a_err='real(psb_spk_)')
endif
if ((.not.sm%sv%is_iterative()).and.(sweeps == 1).and.(sm%novr==0)) then
!
! Shortcut: in this case there is nothing else to be done.
call sm%sv%apply(alpha,x,beta,y,desc_data,trans_,aux,info)
call psb_errpush(psb_err_internal_error_,name,&
& a_err='Error in sub_aply Jacobi Sweeps = 1')
else if (sweeps >= 0) then
! Apply multiple sweeps of an AS solver
! to compute an approximate solution of a linear system.
call psb_geasb(tx,sm%desc_data,info,mold=x%v,scratch=.true.)
call psb_geasb(ty,sm%desc_data,info,mold=x%v,scratch=.true.)
call psb_geasb(ww,sm%desc_data,info,mold=x%v,scratch=.true.)
! Unroll the first iteration and fold it inside SELECT CASE
! this will save one SPMM when INIT=Z, and will be
! significant when sweeps=1 (a common case)
call psb_geaxpby(sone,x,szero,tx,desc_data,info)
if (info == 0) call sm%apply_restr(tx,trans_,aux,info)
if (info == 0) call psb_geaxpby(sone,tx,szero,ww,sm%desc_data,info)
select case (init_)
case('Z')
call sm%sv%apply(sone,ww,szero,ty,sm%desc_data,trans_,aux,info,init='Z')
case('Y')
call psb_geaxpby(sone,y,szero,ty,desc_data,info)
if (info == 0) call sm%apply_restr(ty,trans_,aux,info)
if (info == 0) call psb_spmm(-sone,sm%nd,ty,sone,ww,sm%desc_data,info,&
& work=aux,trans=trans_)
call sm%sv%apply(sone,ww,szero,ty,desc_data,trans_,aux,info,init='Y')
case('U')
if (.not.present(initu)) then
& a_err='missing initu to smoother_apply')
call psb_geaxpby(sone,initu,szero,ty,desc_data,info)
& a_err='wrong init to smoother_apply')
if (info == 0) call sm%apply_prol(ty,trans_,aux,info)
do i=1, sweeps-1
! Compute Y(j+1) = D^(-1)*(X-ND*Y(j)), where D and ND are the
! block diagonal part and the remaining part of the local matrix
! and Y(j) is the approximate solution at sweep j.
if (info /= psb_success_) exit
call sm%sv%apply(sone,ww,szero,ty,sm%desc_data,trans_,aux,info,init='Y')
end do
info=psb_err_internal_error_
call psb_errpush(info,name,&
& a_err='subsolve with Jacobi sweeps > 1')
! Compute y = beta*y + alpha*ty (ty == K^(-1)*tx)
call psb_geaxpby(alpha,ty,beta,y,desc_data,info)
info = psb_err_iarg_neg_
& i_err=(/itwo,sweeps,izero,izero,izero/))
if (.not.(4*isz <= size(work))) then
deallocate(aux,stat=info)
if (info ==0) call ww%free(info)
if (info ==0) call tx%free(info)
if (info ==0) call ty%free(info)
if (info /= 0) then
info = psb_err_alloc_dealloc_
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
end subroutine mld_s_as_smoother_apply_vect