The preconditioners implemented in AMG4PSBLAS are obtained by combining
3 different types of AMG cycles with smoothers and coarsest-level solvers. The V-, W-, and a version of a Krylov-type cycle (K-cycle)~\cite{Briggs2000,Notay2008} are available, which can be combined with weighted versions of Jacobi, hybrid
two different coarsening strategies, based on aggregation, are available:
\begin{itemize}
\item a decoupled version of the well known smoothed aggregation procedure proposed in~\cite{BREZINA_VANEK,VANEK_MANDEL_BREZINA}, and already included in the previous versions of the package~\cite{BDDF2007,MLD2P4_TOMS};
\item the first parallel implementation of a coupled version of Coarsening based on Compatible Weighted Matching introduced in~\cite{DV2013,DFV2018} and described in details in~\cite{DDF2020};
\end{itemize}
Either exact or approximate solvers can be used on the coarsest-level system. Specifically, different sparse LU factorizations from external
packages, native incomplete LU and approximate inverse factorizations, weighted Jacobi, hybrid Gauss-Seidel, block-Jacobi solvers and recursive call to preconditioned Krylov methods are available. All the smoothers can be also exploited as one-level
package. On the other hand, the implementation of AMG4PSBLAS, which was driven by the need to face the exascale challenge, has led to some important revisions and extentions of the PSBLAS infrastructure.
The inter-process comunication required by AMG4PSBLAS is encapsulated