You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
amg4psblas/mlprec/mld_cmlprec_aply.f90

1405 lines
48 KiB
Fortran

mld2p4: config/pac.m4 configure krylov/Makefile krylov/psb_prec_mod.F90 mlprec/Makefile mlprec/mld_basep_bld_mod.f90 mlprec/mld_caggrmap_bld.f90 mlprec/mld_caggrmat_asb.f90 mlprec/mld_caggrmat_raw_asb.F90 mlprec/mld_caggrmat_smth_asb.F90 mlprec/mld_cas_aply.f90 mlprec/mld_cas_bld.f90 mlprec/mld_cbaseprec_aply.f90 mlprec/mld_cbaseprec_bld.f90 mlprec/mld_cdiag_bld.f90 mlprec/mld_cfact_bld.f90 mlprec/mld_cilu0_fact.f90 mlprec/mld_cilu_bld.f90 mlprec/mld_ciluk_fact.f90 mlprec/mld_cilut_fact.f90 mlprec/mld_cmlprec_aply.f90 mlprec/mld_cmlprec_bld.f90 mlprec/mld_cprec_aply.f90 mlprec/mld_cprecbld.f90 mlprec/mld_cprecfree.f90 mlprec/mld_cprecinit.f90 mlprec/mld_cprecset.f90 mlprec/mld_cslu_bld.f90 mlprec/mld_cslu_interface.c mlprec/mld_cslud_bld.f90 mlprec/mld_cslud_interface.c mlprec/mld_csp_renum.f90 mlprec/mld_csub_aply.f90 mlprec/mld_csub_solve.f90 mlprec/mld_cumf_bld.f90 mlprec/mld_cumf_interface.c mlprec/mld_dmlprec_bld.f90 mlprec/mld_dprecset.f90 mlprec/mld_inner_mod.f90 mlprec/mld_prec_mod.f90 mlprec/mld_prec_type.f90 mlprec/mld_saggrmap_bld.f90 mlprec/mld_saggrmat_asb.f90 mlprec/mld_saggrmat_raw_asb.F90 mlprec/mld_saggrmat_smth_asb.F90 mlprec/mld_sas_aply.f90 mlprec/mld_sas_bld.f90 mlprec/mld_sbaseprec_aply.f90 mlprec/mld_sbaseprec_bld.f90 mlprec/mld_sdiag_bld.f90 mlprec/mld_sfact_bld.f90 mlprec/mld_silu0_fact.f90 mlprec/mld_silu_bld.f90 mlprec/mld_siluk_fact.f90 mlprec/mld_silut_fact.f90 mlprec/mld_smlprec_aply.f90 mlprec/mld_smlprec_bld.f90 mlprec/mld_sprec_aply.f90 mlprec/mld_sprecbld.f90 mlprec/mld_sprecfree.f90 mlprec/mld_sprecinit.f90 mlprec/mld_sprecset.f90 mlprec/mld_sslu_bld.f90 mlprec/mld_sslu_interface.c mlprec/mld_sslud_bld.f90 mlprec/mld_sslud_interface.c mlprec/mld_ssp_renum.f90 mlprec/mld_ssub_aply.f90 mlprec/mld_ssub_solve.f90 mlprec/mld_sumf_bld.f90 mlprec/mld_sumf_interface.c mlprec/mld_zilu0_fact.f90 mlprec/mld_zmlprec_aply.f90 mlprec/mld_zmlprec_bld.f90 mlprec/mld_zprecset.f90 test/fileread/Makefile test/fileread/cf_sample.f90 test/fileread/data_input.f90 test/fileread/df_sample.f90 test/fileread/runs/cfs.inp test/fileread/runs/dfs.inp test/fileread/runs/sfs.inp test/fileread/runs/zfs.inp test/fileread/sf_sample.f90 test/fileread/zf_sample.f90 test/pargen/Makefile test/pargen/runs/ppde.inp test/pargen/spde.f90 Merged single precision version.
17 years ago
!!$
!!$
!!$ MLD2P4 version 1.0
!!$ MultiLevel Domain Decomposition Parallel Preconditioners Package
!!$ based on PSBLAS (Parallel Sparse BLAS version 2.2)
!!$
!!$ (C) Copyright 2008
!!$
!!$ Salvatore Filippone University of Rome Tor Vergata
!!$ Alfredo Buttari University of Rome Tor Vergata
!!$ Pasqua D'Ambra ICAR-CNR, Naples
!!$ Daniela di Serafino Second University of Naples
!!$
!!$ Redistribution and use in source and binary forms, with or without
!!$ modification, are permitted provided that the following conditions
!!$ are met:
!!$ 1. Redistributions of source code must retain the above copyright
!!$ notice, this list of conditions and the following disclaimer.
!!$ 2. Redistributions in binary form must reproduce the above copyright
!!$ notice, this list of conditions, and the following disclaimer in the
!!$ documentation and/or other materials provided with the distribution.
!!$ 3. The name of the MLD2P4 group or the names of its contributors may
!!$ not be used to endorse or promote products derived from this
!!$ software without specific written permission.
!!$
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
!!$ POSSIBILITY OF SUCH DAMAGE.
!!$
!!$
! File: mld_cmlprec_aply.f90
!
! Subroutine: mld_cmlprec_aply
! Version: complex
!
! This routine computes
!
! Y = beta*Y + alpha*op(M^(-1))*X,
! where
! - M is a multilevel domain decomposition (Schwarz) preconditioner associated
! to a certain matrix A and stored in the array baseprecv,
! - op(M^(-1)) is M^(-1) or its transpose, according to the value of trans,
! - X and Y are vectors,
! - alpha and beta are scalars.
!
! For each level we have as many submatrices as processes (except for the coarsest
! level where we might have a replicated index space) and each process takes care
! of one submatrix.
!
! The multilevel preconditioner M is regarded as an array of 'base preconditioners',
! each representing the part of the preconditioner associated to a certain level.
! For each level ilev, the base preconditioner K(ilev) is stored in baseprecv(ilev)
! and is associated to a matrix A(ilev), obtained by 'tranferring' the original
! matrix A (i.e. the matrix to be preconditioned) to the level ilev, through smoothed
! aggregation.
!
! The levels are numbered in increasing order starting from the finest one, i.e.
! level 1 is the finest level and A(1) is the matrix A.
!
! For a general description of (parallel) multilevel preconditioners see
! - B.F. Smith, P.E. Bjorstad & W.D. Gropp,
! Domain decomposition: parallel multilevel methods for elliptic partial
! differential equations,
! Cambridge University Press, 1996.
! - K. Stuben,
! Algebraic Multigrid (AMG): An Introduction with Applications,
! GMD Report N. 70, 1999.
!
!
! Arguments:
! alpha - complex(psb_spk_), input.
! The scalar alpha.
! baseprecv - type(mld_cbaseprc_type), dimension(:), input.
! The array of base preconditioner data structures containing the
! local parts of the preconditioners to be applied at each level.
! Note that nlev = size(baseprecv) = number of levels.
! baseprecv(ilev)%av - type(psb_cspmat_type), dimension(:), allocatable(:).
! The sparse matrices needed to apply the preconditioner
! at level ilev.
! baseprecv(ilev)%av(mld_l_pr_) - The L factor of the ILU factorization of the
! local diagonal block of A(ilev).
! baseprecv(ilev)%av(mld_u_pr_) - The U factor of the ILU factorization of the
! local diagonal block of A(ilev), except its
! diagonal entries (stored in baseprecv(ilev)%d).
! baseprecv(ilev)%av(mld_ap_nd_) - The entries of the local part of A(ilev)
! outside the diagonal block, for block-Jacobi
! sweeps.
! baseprecv(ilev)%av(mld_ac_) - The local part of the matrix A(ilev).
! baseprecv(ilev)%av(mld_sm_pr_) - The smoothed prolongator.
! It maps vectors (ilev) ---> (ilev-1).
! baseprecv(ilev)%av(mld_sm_pr_t_) - The smoothed prolongator transpose.
! It maps vectors (ilev-1) ---> (ilev).
! baseprecv(ilev)%d - complex(psb_spk_), dimension(:), allocatable.
! The diagonal entries of the U factor in the ILU
! factorization of A(ilev).
! baseprecv(ilev)%desc_data - type(psb_desc_type).
! The communication descriptor associated to the base
! preconditioner, i.e. to the sparse matrices needed
! to apply the base preconditioner at the current level.
! baseprecv(ilev)%desc_ac - type(psb_desc_type).
! The communication descriptor associated to the sparse
! matrix A(ilev), stored in baseprecv(ilev)%av(mld_ac_).
! baseprecv(ilev)%iprcparm - integer, dimension(:), allocatable.
! The integer parameters defining the base
! preconditioner K(ilev).
! baseprecv(ilev)%rprcparm - complex(psb_spk_), dimension(:), allocatable.
! The real parameters defining the base preconditioner
! K(ilev).
! baseprecv(ilev)%perm - integer, dimension(:), allocatable.
! The row and column permutations applied to the local
! part of A(ilev) (defined only if baseprecv(ilev)%
! iprcparm(mld_sub_ren_)>0).
! baseprecv(ilev)%invperm - integer, dimension(:), allocatable.
! The inverse of the permutation stored in
! baseprecv(ilev)%perm.
! baseprecv(ilev)%mlia - integer, dimension(:), allocatable.
! The aggregation map (ilev-1) --> (ilev).
! In case of non-smoothed aggregation, it is used
! instead of mld_sm_pr_.
! baseprecv(ilev)%nlaggr - integer, dimension(:), allocatable.
! The number of aggregates (rows of A(ilev)) on the
! various processes.
! baseprecv(ilev)%base_a - type(psb_cspmat_type), pointer.
! Pointer (really a pointer!) to the base matrix of
! the current level, i.e. the local part of A(ilev);
! so we have a unified treatment of residuals. We
! need this to avoid passing explicitly the matrix
! A(ilev) to the routine which applies the
! preconditioner.
! baseprecv(ilev)%base_desc - type(psb_desc_type), pointer.
! Pointer to the communication descriptor associated
! to the sparse matrix pointed by base_a.
!
! x - complex(psb_spk_), dimension(:), input.
! The local part of the vector X.
! beta - complex(psb_spk_), input.
! The scalar beta.
! y - complex(psb_spk_), dimension(:), input/output.
! The local part of the vector Y.
! desc_data - type(psb_desc_type), input.
! The communication descriptor associated to the matrix to be
! preconditioned.
! trans - character, optional.
! If trans='N','n' then op(M^(-1)) = M^(-1);
! if trans='T','t' then op(M^(-1)) = M^(-T) (transpose of M^(-1)).
! work - complex(psb_spk_), dimension (:), optional, target.
! Workspace. Its size must be at least 4*psb_cd_get_local_cols(desc_data).
! info - integer, output.
! Error code.
!
! Note that when the LU factorization of the matrix A(ilev) is computed instead of
! the ILU one, by using UMFPACK or SuperLU, the corresponding L and U factors
! are stored in data structures provided by UMFPACK or SuperLU and pointed by
! baseprecv(ilev)%iprcparm(mld_umf_ptr) or baseprecv(ilev)%iprcparm(mld_slu_ptr),
! respectively.
!
subroutine mld_cmlprec_aply(alpha,baseprecv,x,beta,y,desc_data,trans,work,info)
use psb_base_mod
use mld_inner_mod, mld_protect_name => mld_cmlprec_aply
implicit none
! Arguments
type(psb_desc_type),intent(in) :: desc_data
type(mld_cbaseprc_type), intent(in) :: baseprecv(:)
complex(psb_spk_),intent(in) :: alpha,beta
complex(psb_spk_),intent(in) :: x(:)
complex(psb_spk_),intent(inout) :: y(:)
character, intent(in) :: trans
complex(psb_spk_),target :: work(:)
integer, intent(out) :: info
! Local variables
integer :: ictxt, np, me, err_act
integer :: debug_level, debug_unit
character(len=20) :: name
character :: trans_
name = 'mld_cmlprec_aply'
info = 0
call psb_erractionsave(err_act)
debug_unit = psb_get_debug_unit()
debug_level = psb_get_debug_level()
ictxt = psb_cd_get_context(desc_data)
call psb_info(ictxt, me, np)
if (debug_level >= psb_debug_inner_) &
& write(debug_unit,*) me,' ',trim(name),&
& ' Entry ', size(baseprecv)
trans_ = psb_toupper(trans)
select case(baseprecv(2)%iprcparm(mld_ml_type_))
case(mld_no_ml_)
!
! No preconditioning, should not really get here
!
call psb_errpush(4001,name,a_err='mld_no_ml_ in mlprc_aply?')
goto 9999
case(mld_add_ml_)
!
! Additive multilevel
!
call add_ml_aply(alpha,baseprecv,x,beta,y,desc_data,trans_,work,info)
case(mld_mult_ml_)
!
! Multiplicative multilevel (multiplicative among the levels, additive inside
! each level)
!
! Pre/post-smoothing versions.
! Note that the transpose switches pre <-> post.
!
select case(baseprecv(2)%iprcparm(mld_smooth_pos_))
case(mld_post_smooth_)
select case (trans_)
case('N')
call mlt_post_ml_aply(alpha,baseprecv,x,beta,y,desc_data,trans_,work,info)
case('T','C')
call mlt_pre_ml_aply(alpha,baseprecv,x,beta,y,desc_data,trans_,work,info)
case default
info = 4001
call psb_errpush(info,name,a_err='invalid trans')
goto 9999
end select
case(mld_pre_smooth_)
select case (trans_)
case('N')
call mlt_pre_ml_aply(alpha,baseprecv,x,beta,y,desc_data,trans_,work,info)
case('T','C')
call mlt_post_ml_aply(alpha,baseprecv,x,beta,y,desc_data,trans_,work,info)
case default
info = 4001
call psb_errpush(info,name,a_err='invalid trans')
goto 9999
end select
case(mld_twoside_smooth_)
call mlt_twoside_ml_aply(alpha,baseprecv,x,beta,y,desc_data,trans_,work,info)
case default
info = 4013
call psb_errpush(info,name,a_err='invalid smooth_pos',&
& i_Err=(/baseprecv(2)%iprcparm(mld_smooth_pos_),0,0,0,0/))
goto 9999
end select
case default
info = 4013
call psb_errpush(info,name,a_err='invalid mltype',&
& i_Err=(/baseprecv(2)%iprcparm(mld_ml_type_),0,0,0,0/))
goto 9999
end select
call psb_erractionrestore(err_act)
return
9999 continue
call psb_erractionrestore(err_act)
if (err_act.eq.psb_act_abort_) then
call psb_error()
return
end if
return
contains
!
! Subroutine: add_ml_aply
! Version: complex
! Note: internal subroutine of mld_dmlprec_aply.
!
! This routine computes
!
! Y = beta*Y + alpha*op(M^(-1))*X,
! where
! - M is an additive multilevel domain decomposition (Schwarz) preconditioner
! associated to a certain matrix A and stored in the array baseprecv,
! - op(M^(-1)) is M^(-1) or its (conjugate) transpose, according to
! the value of trans,
! - X and Y are vectors,
! - alpha and beta are scalars.
!
! The preconditioner M is additive both through the levels and inside each
! level.
!
! For each level we have as many submatrices as processes (except for the coarsest
! level where we might have a replicated index space) and each process takes care
! of one submatrix.
!
! The multilevel preconditioner M is regarded as an array of 'base preconditioners',
! each representing the part of the preconditioner associated to a certain level.
! For each level ilev, the base preconditioner K(ilev) is stored in baseprecv(ilev)
! and is associated to a matrix A(ilev), obtained by 'tranferring' the original
! matrix A (i.e. the matrix to be preconditioned) to the level ilev, through smoothed
! aggregation.
!
! The levels are numbered in increasing order starting from the finest one, i.e.
! level 1 is the finest level and A(1) is the matrix A.
!
! For details on the additive multilevel Schwarz preconditioner see the
! Algorithm 3.1.1 in the book:
! B.F. Smith, P.E. Bjorstad & W.D. Gropp,
! Domain decomposition: parallel multilevel methods for elliptic partial
! differential equations, Cambridge University Press, 1996.
!
! For a description of the arguments see mld_dmlprec_aply.
!
! A sketch of the algorithm implemented in this routine is provided below
! (AV(ilev; sm_pr_) denotes the smoothed prolongator from level ilev to
! level ilev-1, while AV(ilev; sm_pr_t_) denotes its transpose, i.e. the
! corresponding restriction operator from level ilev-1 to level ilev).
!
! 1. ! Apply the base preconditioner at level 1.
! ! The sum over the subdomains is carried out in the
! ! application of K(1).
! X(1) = Xest
! Y(1) = (K(1)^(-1))*X(1)
!
! 2. DO ilev=2,nlev
!
! ! Transfer X(ilev-1) to the next coarser level.
! X(ilev) = AV(ilev; sm_pr_t_)*X(ilev-1)
!
! ! Apply the base preconditioner at the current level.
! ! The sum over the subdomains is carried out in the
! ! application of K(ilev).
! Y(ilev) = (K(ilev)^(-1))*X(ilev)
!
! ENDDO
!
! 3. DO ilev=nlev-1,1,-1
!
! ! Transfer Y(ilev+1) to the next finer level.
! Y(ilev) = AV(ilev+1; sm_pr_)*Y(ilev+1)
!
! ENDDO
!
! 4. Yext = beta*Yext + alpha*Y(1)
!
subroutine add_ml_aply(alpha,baseprecv,x,beta,y,desc_data,trans,work,info)
implicit none
! Arguments
type(psb_desc_type),intent(in) :: desc_data
type(mld_cbaseprc_type), intent(in) :: baseprecv(:)
complex(psb_spk_),intent(in) :: alpha,beta
complex(psb_spk_),intent(in) :: x(:)
complex(psb_spk_),intent(inout) :: y(:)
character, intent(in) :: trans
complex(psb_spk_),target :: work(:)
integer, intent(out) :: info
! Local variables
integer :: n_row,n_col
integer :: ictxt,np,me,i, nr2l,nc2l,err_act
integer :: debug_level, debug_unit
integer :: ismth, nlev, ilev, icm
character(len=20) :: name
type psb_mlprec_wrk_type
complex(psb_spk_), allocatable :: tx(:),ty(:),x2l(:),y2l(:)
end type psb_mlprec_wrk_type
type(psb_mlprec_wrk_type), allocatable :: mlprec_wrk(:)
name = 'add_ml_aply'
info = 0
call psb_erractionsave(err_act)
debug_unit = psb_get_debug_unit()
debug_level = psb_get_debug_level()
ictxt = psb_cd_get_context(desc_data)
call psb_info(ictxt, me, np)
if (debug_level >= psb_debug_inner_) &
& write(debug_unit,*) me,' ',trim(name),&
& ' Entry ', size(baseprecv)
nlev = size(baseprecv)
allocate(mlprec_wrk(nlev),stat=info)
if (info /= 0) then
call psb_errpush(4010,name,a_err='Allocate')
goto 9999
end if
!
! STEP 1
!
! Apply the base preconditioner at the finest level
!
allocate(mlprec_wrk(1)%x2l(size(x)),mlprec_wrk(1)%y2l(size(y)), stat=info)
if (info /= 0) then
info=4025
call psb_errpush(info,name,i_err=(/size(x)+size(y),0,0,0,0/),&
& a_err='complex(psb_spk_)')
goto 9999
end if
mlprec_wrk(1)%x2l(:) = x(:)
mlprec_wrk(1)%y2l(:) = czero
call mld_baseprec_aply(alpha,baseprecv(1),x,beta,y,&
& baseprecv(1)%base_desc,trans,work,info)
if (info /=0) then
call psb_errpush(4010,name,a_err='baseprec_aply')
goto 9999
end if
!
! STEP 2
!
! For each level except the finest one ...
!
do ilev = 2, nlev
n_row = psb_cd_get_local_rows(baseprecv(ilev-1)%base_desc)
n_col = psb_cd_get_local_cols(baseprecv(ilev-1)%base_desc)
nc2l = psb_cd_get_local_cols(baseprecv(ilev)%base_desc)
nr2l = psb_cd_get_local_rows(baseprecv(ilev)%base_desc)
allocate(mlprec_wrk(ilev)%x2l(nc2l),mlprec_wrk(ilev)%y2l(nc2l),&
& stat=info)
if (info /= 0) then
info=4025
call psb_errpush(info,name,i_err=(/2*(nc2l+max(n_row,n_col)),0,0,0,0/),&
& a_err='complex(psb_spk_)')
goto 9999
end if
ismth = baseprecv(ilev)%iprcparm(mld_aggr_kind_)
icm = baseprecv(ilev)%iprcparm(mld_coarse_mat_)
! Apply prolongator transpose, i.e. restriction
call psb_forward_map(cone,mlprec_wrk(ilev-1)%x2l,&
& czero,mlprec_wrk(ilev)%x2l,&
& baseprecv(ilev)%map_desc,info,work=work)
if (info /=0) then
call psb_errpush(4001,name,a_err='Error during restriction')
goto 9999
end if
!
! Apply the base preconditioner
!
call mld_baseprec_aply(cone,baseprecv(ilev),&
& mlprec_wrk(ilev)%x2l,czero,mlprec_wrk(ilev)%y2l,&
& baseprecv(ilev)%base_desc,trans,work,info)
enddo
!
! STEP 3
!
! For each level except the finest one ...
!
do ilev =nlev,2,-1
n_row = psb_cd_get_local_rows(baseprecv(ilev-1)%base_desc)
n_col = psb_cd_get_local_cols(baseprecv(ilev-1)%base_desc)
nc2l = psb_cd_get_local_cols(baseprecv(ilev)%base_desc)
nr2l = psb_cd_get_local_rows(baseprecv(ilev)%base_desc)
ismth = baseprecv(ilev)%iprcparm(mld_aggr_kind_)
icm = baseprecv(ilev)%iprcparm(mld_coarse_mat_)
!
! Apply prolongator
!
call psb_backward_map(cone,mlprec_wrk(ilev)%y2l,&
& cone,mlprec_wrk(ilev-1)%y2l,&
& baseprecv(ilev)%map_desc,info,work=work)
if (info /=0) then
call psb_errpush(4001,name,a_err='Error during prolongation')
goto 9999
end if
end do
!
! STEP 4
!
! Compute the output vector Y
!
call psb_geaxpby(alpha,mlprec_wrk(1)%y2l,cone,y,baseprecv(1)%base_desc,info)
if (info /= 0) then
call psb_errpush(4001,name,a_err='Error on final update')
goto 9999
end if
deallocate(mlprec_wrk,stat=info)
if (info /= 0) then
call psb_errpush(4000,name)
goto 9999
end if
call psb_erractionrestore(err_act)
return
9999 continue
call psb_erractionrestore(err_act)
if (err_act.eq.psb_act_abort_) then
call psb_error()
return
end if
return
end subroutine add_ml_aply
!
! Subroutine: mlt_pre_ml_aply
! Version: complex
! Note: internal subroutine of mld_dmlprec_aply.
!
! This routine computes
!
! Y = beta*Y + alpha*op(M^(-1))*X,
! where
! - M is a hybrid multilevel domain decomposition (Schwarz) preconditioner
! associated to a certain matrix A and stored in the array baseprecv,
! - op(M^(-1)) is M^(-1) or its (conjugate) transpose, according to
! the value of trans,
! - X and Y are vectors,
! - alpha and beta are scalars.
!
! The preconditioner M is hybrid in the sense that it is multiplicative through the
! levels and additive inside a level; pre-smoothing only is applied at each level.
!
! For each level we have as many submatrices as processes (except for the coarsest
! level where we might have a replicated index space) and each process takes care
! of one submatrix.
!
! The multilevel preconditioner M is regarded as an array of 'base preconditioners',
! each representing the part of the preconditioner associated to a certain level.
! For each level ilev, the base preconditioner K(ilev) is stored in baseprecv(ilev)
! and is associated to a matrix A(ilev), obtained by 'tranferring' the original
! matrix A (i.e. the matrix to be preconditioned) to the level ilev, through smoothed
! aggregation.
!
! The levels are numbered in increasing order starting from the finest one, i.e.
! level 1 is the finest level and A(1) is the matrix A.
!
! For details on the pre-smoothed hybrid multiplicative multilevel Schwarz
! preconditioner, see the Algorithm 3.2.1 in the book:
! B.F. Smith, P.E. Bjorstad & W.D. Gropp,
! Domain decomposition: parallel multilevel methods for elliptic partial
! differential equations, Cambridge University Press, 1996.
!
! For a description of the arguments see mld_dmlprec_aply.
!
! A sketch of the algorithm implemented in this routine is provided below
! (AV(ilev; sm_pr_) denotes the smoothed prolongator from level ilev to
! level ilev-1, while AV(ilev; sm_pr_t_) denotes its transpose, i.e. the
! corresponding restriction operator from level ilev-1 to level ilev).
!
! 1. X(1) = Xext
!
! 2. ! Apply the base preconditioner at the finest level.
! Y(1) = (K(1)^(-1))*X(1)
!
! 3. ! Compute the residual at the finest level.
! TX(1) = X(1) - A(1)*Y(1)
!
! 4. DO ilev=2, nlev
!
! ! Transfer the residual to the current (coarser) level.
! X(ilev) = AV(ilev; sm_pr_t_)*TX(ilev-1)
!
! ! Apply the base preconditioner at the current level.
! ! The sum over the subdomains is carried out in the
! ! application of K(ilev).
! Y(ilev) = (K(ilev)^(-1))*X(ilev)
!
! ! Compute the residual at the current level (except at
! ! the coarsest level).
! IF (ilev < nlev)
! TX(ilev) = (X(ilev)-A(ilev)*Y(ilev))
!
! ENDDO
!
! 5. DO ilev=nlev-1,1,-1
!
! ! Transfer Y(ilev+1) to the next finer level
! Y(ilev) = Y(ilev) + AV(ilev+1; sm_pr_)*Y(ilev+1)
!
! ENDDO
!
! 6. Yext = beta*Yext + alpha*Y(1)
!
!
subroutine mlt_pre_ml_aply(alpha,baseprecv,x,beta,y,desc_data,trans,work,info)
implicit none
! Arguments
type(psb_desc_type),intent(in) :: desc_data
type(mld_cbaseprc_type), intent(in) :: baseprecv(:)
complex(psb_spk_),intent(in) :: alpha,beta
complex(psb_spk_),intent(in) :: x(:)
complex(psb_spk_),intent(inout) :: y(:)
character, intent(in) :: trans
complex(psb_spk_),target :: work(:)
integer, intent(out) :: info
! Local variables
integer :: n_row,n_col
integer :: ictxt,np,me,i, nr2l,nc2l,err_act
integer :: debug_level, debug_unit
integer :: ismth, nlev, ilev, icm
character(len=20) :: name
type psb_mlprec_wrk_type
complex(psb_spk_), allocatable :: tx(:),ty(:),x2l(:),y2l(:)
end type psb_mlprec_wrk_type
type(psb_mlprec_wrk_type), allocatable :: mlprec_wrk(:)
name = 'mlt_pre_ml_aply'
info = 0
call psb_erractionsave(err_act)
debug_unit = psb_get_debug_unit()
debug_level = psb_get_debug_level()
ictxt = psb_cd_get_context(desc_data)
call psb_info(ictxt, me, np)
if (debug_level >= psb_debug_inner_) &
& write(debug_unit,*) me,' ',trim(name),&
& ' Entry ', size(baseprecv)
nlev = size(baseprecv)
allocate(mlprec_wrk(nlev),stat=info)
if (info /= 0) then
call psb_errpush(4010,name,a_err='Allocate')
goto 9999
end if
!
! STEP 1
!
! Copy the input vector X
!
n_col = psb_cd_get_local_cols(desc_data)
nc2l = psb_cd_get_local_cols(baseprecv(1)%base_desc)
allocate(mlprec_wrk(1)%x2l(nc2l),mlprec_wrk(1)%y2l(nc2l), &
& mlprec_wrk(1)%tx(nc2l), stat=info)
if (info /= 0) then
info=4025
call psb_errpush(info,name,i_err=(/4*nc2l,0,0,0,0/),&
& a_err='complex(psb_spk_)')
goto 9999
end if
mlprec_wrk(1)%x2l(:) = x
!
! STEP 2
!
! Apply the base preconditioner at the finest level
!
call mld_baseprec_aply(cone,baseprecv(1),mlprec_wrk(1)%x2l,&
& czero,mlprec_wrk(1)%y2l,baseprecv(1)%base_desc,&
& trans,work,info)
if (info /=0) then
call psb_errpush(4010,name,a_err=' baseprec_aply')
goto 9999
end if
!
! STEP 3
!
! Compute the residual at the finest level
!
mlprec_wrk(1)%tx = mlprec_wrk(1)%x2l
call psb_spmm(-cone,baseprecv(1)%base_a,mlprec_wrk(1)%y2l,&
& cone,mlprec_wrk(1)%tx,baseprecv(1)%base_desc,info,&
& work=work,trans=trans)
if (info /=0) then
call psb_errpush(4001,name,a_err=' fine level residual')
goto 9999
end if
!
! STEP 4
!
! For each level but the finest one ...
!
do ilev = 2, nlev
n_row = psb_cd_get_local_rows(baseprecv(ilev-1)%base_desc)
n_col = psb_cd_get_local_cols(baseprecv(ilev-1)%base_desc)
nc2l = psb_cd_get_local_cols(baseprecv(ilev)%base_desc)
nr2l = psb_cd_get_local_rows(baseprecv(ilev)%base_desc)
ismth = baseprecv(ilev)%iprcparm(mld_aggr_kind_)
icm = baseprecv(ilev)%iprcparm(mld_coarse_mat_)
allocate(mlprec_wrk(ilev)%tx(nc2l),mlprec_wrk(ilev)%y2l(nc2l),&
& mlprec_wrk(ilev)%x2l(nc2l), stat=info)
if (info /= 0) then
info=4025
call psb_errpush(info,name,i_err=(/4*nc2l,0,0,0,0/),&
& a_err='complex(psb_spk_)')
goto 9999
end if
! Apply prolongator transpose, i.e. restriction
call psb_forward_map(cone,mlprec_wrk(ilev-1)%tx,&
& czero,mlprec_wrk(ilev)%x2l,&
& baseprecv(ilev)%map_desc,info,work=work)
if (info /=0) then
call psb_errpush(4001,name,a_err='Error during restriction')
goto 9999
end if
!
! Apply the base preconditioner
!
call mld_baseprec_aply(cone,baseprecv(ilev),mlprec_wrk(ilev)%x2l,&
& czero,mlprec_wrk(ilev)%y2l,baseprecv(ilev)%base_desc,trans,work,info)
!
! Compute the residual (at all levels but the coarsest one)
!
if (ilev < nlev) then
mlprec_wrk(ilev)%tx = mlprec_wrk(ilev)%x2l
if (info == 0) call psb_spmm(-cone,baseprecv(ilev)%base_a,&
& mlprec_wrk(ilev)%y2l,cone,mlprec_wrk(ilev)%tx,&
& baseprecv(ilev)%base_desc,info,work=work,trans=trans)
endif
if (info /=0) then
call psb_errpush(4001,name,a_err='Error on up sweep residual')
goto 9999
end if
enddo
!
! STEP 5
!
! For each level but the coarsest one ...
!
do ilev = nlev-1, 1, -1
ismth = baseprecv(ilev+1)%iprcparm(mld_aggr_kind_)
n_row = psb_cd_get_local_rows(baseprecv(ilev)%base_desc)
!
! Apply prolongator
!
call psb_backward_map(cone,mlprec_wrk(ilev+1)%y2l,&
& cone,mlprec_wrk(ilev)%y2l,&
& baseprecv(ilev+1)%map_desc,info,work=work)
if (info /=0) then
call psb_errpush(4001,name,a_err='Error during prolongation')
goto 9999
end if
enddo
!
! STEP 6
!
! Compute the output vector Y
!
call psb_geaxpby(alpha,mlprec_wrk(1)%y2l,beta,y,&
& baseprecv(1)%base_desc,info)
if (info /=0) then
call psb_errpush(4001,name,a_err='Error on final update')
goto 9999
end if
deallocate(mlprec_wrk,stat=info)
if (info /= 0) then
call psb_errpush(4000,name)
goto 9999
end if
call psb_erractionrestore(err_act)
return
9999 continue
call psb_erractionrestore(err_act)
if (err_act.eq.psb_act_abort_) then
call psb_error()
return
end if
return
end subroutine mlt_pre_ml_aply
!
! Subroutine: mlt_post_ml_aply
! Version: complex
! Note: internal subroutine of mld_dmlprec_aply.
!
! This routine computes
!
! Y = beta*Y + alpha*op(M^(-1))*X,
! where
! - M is a hybrid multilevel domain decomposition (Schwarz) preconditioner
! associated to a certain matrix A and stored in the array baseprecv,
! - op(M^(-1)) is M^(-1) or its (conjugate) transpose, according to
! the value of trans,
! - X and Y are vectors,
! - alpha and beta are scalars.
!
! The preconditioner M is hybrid in the sense that it is multiplicative through the
! levels and additive inside a level; post-smoothing only is applied at each level.
!
! For each level we have as many submatrices as processes (except for the coarsest
! level where we might have a replicated index space) and each process takes care
! of one submatrix.
!
! The multilevel preconditioner M is regarded as an array of 'base preconditioners',
! each representing the part of the preconditioner associated to a certain level.
! For each level ilev, the base preconditioner K(ilev) is stored in baseprecv(ilev)
! and is associated to a matrix A(ilev), obtained by 'tranferring' the original
! matrix A (i.e. the matrix to be preconditioned) to the level ilev, through smoothed
! aggregation.
!
! The levels are numbered in increasing order starting from the finest one, i.e.
! level 1 is the finest level and A(1) is the matrix A.
!
! For details on hybrid multiplicative multilevel Schwarz preconditioners, see
! B.F. Smith, P.E. Bjorstad & W.D. Gropp,
! Domain decomposition: parallel multilevel methods for elliptic partial
! differential equations, Cambridge University Press, 1996.
!
! For a description of the arguments see mld_dmlprec_aply.
!
! A sketch of the algorithm implemented in this routine is provided below.
! (AV(ilev; sm_pr_) denotes the smoothed prolongator from level ilev to
! level ilev-1, while AV(ilev; sm_pr_t_) denotes its transpose, i.e. the
! corresponding restriction operator from level ilev-1 to level ilev).
!
! 1. X(1) = Xext
!
! 2. DO ilev=2, nlev
!
! ! Transfer X(ilev-1) to the next coarser level.
! X(ilev) = AV(ilev; sm_pr_t_)*X(ilev-1)
!
! ENDDO
!
! 3.! Apply the preconditioner at the coarsest level.
! Y(nlev) = (K(nlev)^(-1))*X(nlev)
!
! 4. DO ilev=nlev-1,1,-1
!
! ! Transfer Y(ilev+1) to the next finer level.
! Y(ilev) = AV(ilev+1; sm_pr_)*Y(ilev+1)
!
! ! Compute the residual at the current level and apply to it the
! ! base preconditioner. The sum over the subdomains is carried out
! ! in the application of K(ilev).
! Y(ilev) = Y(ilev) + (K(ilev)^(-1))*(X(ilev)-A(ilev)*Y(ilev))
!
! ENDDO
!
! 5. Yext = beta*Yext + alpha*Y(1)
!
!
subroutine mlt_post_ml_aply(alpha,baseprecv,x,beta,y,desc_data,trans,work,info)
implicit none
! Arguments
type(psb_desc_type),intent(in) :: desc_data
type(mld_cbaseprc_type), intent(in) :: baseprecv(:)
complex(psb_spk_),intent(in) :: alpha,beta
complex(psb_spk_),intent(in) :: x(:)
complex(psb_spk_),intent(inout) :: y(:)
character, intent(in) :: trans
complex(psb_spk_),target :: work(:)
integer, intent(out) :: info
! Local variables
integer :: n_row,n_col
integer :: ictxt,np,me,i, nr2l,nc2l,err_act
integer :: debug_level, debug_unit
integer :: ismth, nlev, ilev, icm
character(len=20) :: name
type psb_mlprec_wrk_type
complex(psb_spk_), allocatable :: tx(:),ty(:),x2l(:),y2l(:)
end type psb_mlprec_wrk_type
type(psb_mlprec_wrk_type), allocatable :: mlprec_wrk(:)
name = 'mlt_post_ml_aply'
info = 0
call psb_erractionsave(err_act)
debug_unit = psb_get_debug_unit()
debug_level = psb_get_debug_level()
ictxt = psb_cd_get_context(desc_data)
call psb_info(ictxt, me, np)
if (debug_level >= psb_debug_inner_) &
& write(debug_unit,*) me,' ',trim(name),&
& ' Entry ', size(baseprecv)
nlev = size(baseprecv)
allocate(mlprec_wrk(nlev),stat=info)
if (info /= 0) then
call psb_errpush(4010,name,a_err='Allocate')
goto 9999
end if
!
! STEP 1
!
! Copy the input vector X
!
if (debug_level >= psb_debug_inner_) &
& write(debug_unit,*) me,' ',trim(name),&
& ' desc_data status',allocated(desc_data%matrix_data)
n_col = psb_cd_get_local_cols(desc_data)
nc2l = psb_cd_get_local_cols(baseprecv(1)%base_desc)
allocate(mlprec_wrk(1)%x2l(nc2l),mlprec_wrk(1)%y2l(nc2l), &
& mlprec_wrk(1)%tx(nc2l), stat=info)
call psb_geaxpby(cone,x,czero,mlprec_wrk(1)%tx,&
& baseprecv(1)%base_desc,info)
call psb_geaxpby(cone,x,czero,mlprec_wrk(1)%x2l,&
& baseprecv(1)%base_desc,info)
!
! STEP 2
!
! For each level but the finest one ...
!
do ilev=2, nlev
n_row = psb_cd_get_local_rows(baseprecv(ilev-1)%base_desc)
n_col = psb_cd_get_local_cols(baseprecv(ilev-1)%base_desc)
nc2l = psb_cd_get_local_cols(baseprecv(ilev)%base_desc)
nr2l = psb_cd_get_local_rows(baseprecv(ilev)%base_desc)
ismth = baseprecv(ilev)%iprcparm(mld_aggr_kind_)
icm = baseprecv(ilev)%iprcparm(mld_coarse_mat_)
if (debug_level >= psb_debug_inner_) &
& write(debug_unit,*) me,' ',trim(name), &
& ' starting up sweep ',&
& ilev,allocated(baseprecv(ilev)%iprcparm),n_row,n_col,&
& nc2l, nr2l,ismth
allocate(mlprec_wrk(ilev)%tx(nc2l),mlprec_wrk(ilev)%y2l(nc2l),&
& mlprec_wrk(ilev)%x2l(nc2l), stat=info)
if (info /= 0) then
info=4025
call psb_errpush(info,name,i_err=(/4*nc2l,0,0,0,0/),&
& a_err='complex(psb_spk_)')
goto 9999
end if
! Apply prolongator transpose, i.e. restriction
call psb_forward_map(cone,mlprec_wrk(ilev-1)%x2l,&
& czero,mlprec_wrk(ilev)%x2l,&
& baseprecv(ilev)%map_desc,info,work=work)
if (info /=0) then
call psb_errpush(4001,name,a_err='Error during restriction')
goto 9999
end if
!
! update x2l
!
call psb_geaxpby(cone,mlprec_wrk(ilev)%x2l,czero,mlprec_wrk(ilev)%tx,&
& baseprecv(ilev)%base_desc,info)
if (info /= 0) then
call psb_errpush(4001,name,a_err='Error in update')
goto 9999
end if
if (debug_level >= psb_debug_inner_) &
& write(debug_unit,*) me,' ',trim(name),&
& ' done up sweep ', ilev
enddo
!
! STEP 3
!
! Apply the base preconditioner at the coarsest level
!
call mld_baseprec_aply(cone,baseprecv(nlev),mlprec_wrk(nlev)%x2l, &
& czero, mlprec_wrk(nlev)%y2l,baseprecv(nlev)%base_desc,trans,work,info)
if (info /=0) then
call psb_errpush(4010,name,a_err='baseprec_aply')
goto 9999
end if
if (debug_level >= psb_debug_inner_) write(debug_unit,*) &
& me,' ',trim(name), ' done baseprec_aply ', nlev
!
! STEP 4
!
! For each level but the coarsest one ...
!
do ilev=nlev-1, 1, -1
if (debug_level >= psb_debug_inner_) &
& write(debug_unit,*) me,' ',trim(name),&
& ' starting down sweep',ilev
ismth = baseprecv(ilev+1)%iprcparm(mld_aggr_kind_)
n_row = psb_cd_get_local_rows(baseprecv(ilev)%base_desc)
!
! Apply prolongator
!
call psb_backward_map(cone,mlprec_wrk(ilev+1)%y2l,&
& czero,mlprec_wrk(ilev)%y2l,&
& baseprecv(ilev+1)%map_desc,info,work=work)
if (info /=0) then
call psb_errpush(4001,name,a_err='Error during prolongation')
goto 9999
end if
!
! Compute the residual
!
call psb_spmm(-cone,baseprecv(ilev)%base_a,mlprec_wrk(ilev)%y2l,&
& cone,mlprec_wrk(ilev)%tx,baseprecv(ilev)%base_desc,info,&
& work=work,trans=trans)
!
! Apply the base preconditioner
!
if (info == 0) call mld_baseprec_aply(cone,baseprecv(ilev),mlprec_wrk(ilev)%tx,&
& cone,mlprec_wrk(ilev)%y2l,baseprecv(ilev)%base_desc,trans,work,info)
if (info /=0) then
call psb_errpush(4001,name,a_err=' spmm/baseprec_aply')
goto 9999
end if
if (debug_level >= psb_debug_inner_) &
& write(debug_unit,*) me,' ',trim(name),&
& ' done down sweep',ilev
enddo
!
! STEP 5
!
! Compute the output vector Y
!
call psb_geaxpby(alpha,mlprec_wrk(1)%y2l,beta,y,baseprecv(1)%base_desc,info)
if (info /=0) then
call psb_errpush(4001,name,a_err=' Final update')
goto 9999
end if
deallocate(mlprec_wrk,stat=info)
if (info /= 0) then
call psb_errpush(4000,name)
goto 9999
end if
call psb_erractionrestore(err_act)
return
9999 continue
call psb_erractionrestore(err_act)
if (err_act.eq.psb_act_abort_) then
call psb_error()
return
end if
return
end subroutine mlt_post_ml_aply
!
! Subroutine: mlt_twoside_ml_aply
! Version: complex
! Note: internal subroutine of mld_dmlprec_aply.
!
! This routine computes
!
! Y = beta*Y + alpha*op(M^(-1))*X,
! where
! - M is a symmetrized hybrid multilevel domain decomposition (Schwarz)
! preconditioner associated to a certain matrix A and stored in the array
! baseprecv,
! - op(M^(-1)) is M^(-1) or its (conjugate) transpose, according to
! the value of trans,
! - X and Y are vectors,
! - alpha and beta are scalars.
!
! The preconditioner M is hybrid in the sense that it is multiplicative through
! the levels and additive inside a level; it is symmetrized since pre-smoothing
! and post-smoothing are applied at each level.
!
! For each level we have as many submatrices as processes (except for the coarsest
! level where we might have a replicated index space) and each process takes care
! of one submatrix.
!
! The multilevel preconditioner M is regarded as an array of 'base preconditioners',
! each representing the part of the preconditioner associated to a certain level.
! For each level ilev, the base preconditioner K(ilev) is stored in baseprecv(ilev)
! and is associated to a matrix A(ilev), obtained by 'tranferring' the original
! matrix A (i.e. the matrix to be preconditioned) to the level ilev, through smoothed
! aggregation.
!
! The levels are numbered in increasing order starting from the finest one, i.e.
! level 1 is the finest level and A(1) is the matrix A.
!
! For details on the symmetrized hybrid multiplicative multilevel Schwarz
! preconditioner, see the Algorithm 3.2.2 of the book:
! B.F. Smith, P.E. Bjorstad & W.D. Gropp,
! Domain decomposition: parallel multilevel methods for elliptic partial
! differential equations, Cambridge University Press, 1996.
!
! For a description of the arguments see mld_dmlprec_aply.
!
! A sketch of the algorithm implemented in this routine is provided below.
! (AV(ilev; sm_pr_) denotes the smoothed prolongator from level ilev to
! level ilev-1, while AV(ilev; sm_pr_t_) denotes its transpose, i.e. the
! corresponding restriction operator from level ilev-1 to level ilev).
!
! 1. X(1) = Xext
!
! 2. ! Apply the base peconditioner at the finest level
! Y(1) = (K(1)^(-1))*X(1)
!
! 3. ! Compute the residual at the finest level
! TX(1) = X(1) - A(1)*Y(1)
!
! 4. DO ilev=2, nlev
!
! ! Transfer the residual to the current (coarser) level
! X(ilev) = AV(ilev; sm_pr_t)*TX(ilev-1)
!
! ! Apply the base preconditioner at the current level.
! ! The sum over the subdomains is carried out in the
! ! application of K(ilev)
! Y(ilev) = (K(ilev)^(-1))*X(ilev)
!
! ! Compute the residual at the current level
! TX(ilev) = (X(ilev)-A(ilev)*Y(ilev))
!
! ENDDO
!
! 5. DO ilev=NLEV-1,1,-1
!
! ! Transfer Y(ilev+1) to the next finer level
! Y(ilev) = Y(ilev) + AV(ilev+1; sm_pr_)*Y(ilev+1)
!
! ! Compute the residual at the current level and apply to it the
! ! base preconditioner. The sum over the subdomains is carried out
! ! in the application of K(ilev)
! Y(ilev) = Y(ilev) + (K(ilev)**(-1))*(X(ilev)-A(ilev)*Y(ilev))
!
! ENDDO
!
! 6. Yext = beta*Yext + alpha*Y(1)
!
subroutine mlt_twoside_ml_aply(alpha,baseprecv,x,beta,y,desc_data,trans,work,info)
implicit none
! Arguments
type(psb_desc_type),intent(in) :: desc_data
type(mld_cbaseprc_type), intent(in) :: baseprecv(:)
complex(psb_spk_),intent(in) :: alpha,beta
complex(psb_spk_),intent(in) :: x(:)
complex(psb_spk_),intent(inout) :: y(:)
character, intent(in) :: trans
complex(psb_spk_),target :: work(:)
integer, intent(out) :: info
! Local variables
integer :: n_row,n_col
integer :: ictxt,np,me,i, nr2l,nc2l,err_act
integer :: debug_level, debug_unit
integer :: ismth, nlev, ilev, icm
character(len=20) :: name
type psb_mlprec_wrk_type
complex(psb_spk_), allocatable :: tx(:),ty(:),x2l(:),y2l(:)
end type psb_mlprec_wrk_type
type(psb_mlprec_wrk_type), allocatable :: mlprec_wrk(:)
name = 'mlt_twoside_ml_aply'
info = 0
call psb_erractionsave(err_act)
debug_unit = psb_get_debug_unit()
debug_level = psb_get_debug_level()
ictxt = psb_cd_get_context(desc_data)
call psb_info(ictxt, me, np)
if (debug_level >= psb_debug_inner_) &
& write(debug_unit,*) me,' ',trim(name),&
& ' Entry ', size(baseprecv)
nlev = size(baseprecv)
allocate(mlprec_wrk(nlev),stat=info)
if (info /= 0) then
call psb_errpush(4010,name,a_err='Allocate')
goto 9999
end if
! STEP 1
!
! Copy the input vector X
!
n_col = psb_cd_get_local_cols(desc_data)
nc2l = psb_cd_get_local_cols(baseprecv(1)%base_desc)
allocate(mlprec_wrk(1)%x2l(nc2l),mlprec_wrk(1)%y2l(nc2l), &
& mlprec_wrk(1)%ty(nc2l), mlprec_wrk(1)%tx(nc2l), stat=info)
if (info /= 0) then
info=4025
call psb_errpush(info,name,i_err=(/4*nc2l,0,0,0,0/),&
& a_err='complex(psb_spk_)')
goto 9999
end if
call psb_geaxpby(cone,x,czero,mlprec_wrk(1)%x2l,&
& baseprecv(1)%base_desc,info)
call psb_geaxpby(cone,x,czero,mlprec_wrk(1)%tx,&
& baseprecv(1)%base_desc,info)
!
! STEP 2
!
! Apply the base preconditioner at the finest level
!
call mld_baseprec_aply(cone,baseprecv(1),mlprec_wrk(1)%x2l,&
& czero,mlprec_wrk(1)%y2l,baseprecv(1)%base_desc,&
& trans,work,info)
!
! STEP 3
!
! Compute the residual at the finest level
!
mlprec_wrk(1)%ty = mlprec_wrk(1)%x2l
if (info == 0) call psb_spmm(-cone,baseprecv(1)%base_a,mlprec_wrk(1)%y2l,&
& cone,mlprec_wrk(1)%ty,baseprecv(1)%base_desc,info,&
& work=work,trans=trans)
if (info /=0) then
call psb_errpush(4010,name,a_err='Fine level baseprec/residual')
goto 9999
end if
!
! STEP 4
!
! For each level but the finest one ...
!
do ilev = 2, nlev
n_row = psb_cd_get_local_rows(baseprecv(ilev-1)%base_desc)
n_col = psb_cd_get_local_cols(baseprecv(ilev-1)%base_desc)
nc2l = psb_cd_get_local_cols(baseprecv(ilev)%base_desc)
nr2l = psb_cd_get_local_rows(baseprecv(ilev)%base_desc)
ismth = baseprecv(ilev)%iprcparm(mld_aggr_kind_)
icm = baseprecv(ilev)%iprcparm(mld_coarse_mat_)
allocate(mlprec_wrk(ilev)%tx(nc2l),mlprec_wrk(ilev)%ty(nc2l),&
& mlprec_wrk(ilev)%y2l(nc2l),mlprec_wrk(ilev)%x2l(nc2l), stat=info)
if (info /= 0) then
info=4025
call psb_errpush(info,name,i_err=(/4*nc2l,0,0,0,0/),&
& a_err='complex(psb_spk_)')
goto 9999
end if
! Apply prolongator transpose, i.e. restriction
call psb_forward_map(cone,mlprec_wrk(ilev-1)%ty,&
& czero,mlprec_wrk(ilev)%x2l,&
& baseprecv(ilev)%map_desc,info,work=work)
if (info /=0) then
call psb_errpush(4001,name,a_err='Error during restriction')
goto 9999
end if
call psb_geaxpby(cone,mlprec_wrk(ilev)%x2l,czero,mlprec_wrk(ilev)%tx,&
& baseprecv(ilev)%base_desc,info)
!
! Apply the base preconditioner
!
if (info == 0) call mld_baseprec_aply(cone,baseprecv(ilev),&
& mlprec_wrk(ilev)%x2l,czero,mlprec_wrk(ilev)%y2l,&
&baseprecv(ilev)%base_desc,trans,work,info)
!
! Compute the residual (at all levels but the coarsest one)
!
if(ilev < nlev) then
mlprec_wrk(ilev)%ty = mlprec_wrk(ilev)%x2l
if (info == 0) call psb_spmm(-cone,baseprecv(ilev)%base_a,&
& mlprec_wrk(ilev)%y2l,cone,mlprec_wrk(ilev)%ty,&
& baseprecv(ilev)%base_desc,info,work=work,trans=trans)
endif
if (info /=0) then
call psb_errpush(4001,name,a_err='baseprec_aply/residual')
goto 9999
end if
enddo
!
! STEP 5
!
! For each level but the coarsest one ...
!
do ilev=nlev-1, 1, -1
ismth = baseprecv(ilev+1)%iprcparm(mld_aggr_kind_)
n_row = psb_cd_get_local_rows(baseprecv(ilev)%base_desc)
!
! Apply prolongator
!
call psb_backward_map(cone,mlprec_wrk(ilev+1)%y2l,&
& cone,mlprec_wrk(ilev)%y2l,&
& baseprecv(ilev+1)%map_desc,info,work=work)
if (info /=0 ) then
call psb_errpush(4001,name,a_err='Error during restriction')
goto 9999
end if
!
! Compute the residual
!
call psb_spmm(-cone,baseprecv(ilev)%base_a,mlprec_wrk(ilev)%y2l,&
& cone,mlprec_wrk(ilev)%tx,baseprecv(ilev)%base_desc,info,&
& work=work,trans=trans)
!
! Apply the base preconditioner
!
if (info == 0) call mld_baseprec_aply(cone,baseprecv(ilev),mlprec_wrk(ilev)%tx,&
& cone,mlprec_wrk(ilev)%y2l,baseprecv(ilev)%base_desc, trans, work,info)
if (info /= 0) then
call psb_errpush(4001,name,a_err='Error: residual/baseprec_aply')
goto 9999
end if
enddo
!
! STEP 6
!
! Compute the output vector Y
!
call psb_geaxpby(alpha,mlprec_wrk(1)%y2l,beta,y,&
& baseprecv(1)%base_desc,info)
if (info /= 0) then
call psb_errpush(4001,name,a_err='Error final update')
goto 9999
end if
deallocate(mlprec_wrk,stat=info)
if (info /= 0) then
call psb_errpush(4000,name)
goto 9999
end if
call psb_erractionrestore(err_act)
return
9999 continue
call psb_erractionrestore(err_act)
if (err_act.eq.psb_act_abort_) then
call psb_error()
return
end if
return
end subroutine mlt_twoside_ml_aply
end subroutine mld_cmlprec_aply