<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!-- Converted with LaTeX2HTML 2012 (1.2)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
< HTML >
< HEAD >
< TITLE > AMG preconditioners< / TITLE >
< META NAME = "description" CONTENT = "AMG preconditioners" >
< META NAME = "keywords" CONTENT = "userhtml" >
< META NAME = "resource-type" CONTENT = "document" >
< META NAME = "distribution" CONTENT = "global" >
< META NAME = "Generator" CONTENT = "LaTeX2HTML v2012" >
< META HTTP-EQUIV = "Content-Style-Type" CONTENT = "text/css" >
< LINK REL = "STYLESHEET" HREF = "userhtml.css" >
< LINK REL = "previous" HREF = "node11.html" >
< LINK REL = "up" HREF = "node11.html" >
< LINK REL = "next" HREF = "node13.html" >
< / HEAD >
< BODY >
<!-- Navigation Panel -->
< A NAME = "tex2html220"
HREF="node13.html">
< IMG WIDTH = "37" HEIGHT = "24" ALIGN = "BOTTOM" BORDER = "0" ALT = "next" SRC = "next.png" > < / A >
< A NAME = "tex2html216"
HREF="node11.html">
< IMG WIDTH = "26" HEIGHT = "24" ALIGN = "BOTTOM" BORDER = "0" ALT = "up" SRC = "up.png" > < / A >
< A NAME = "tex2html212"
HREF="node11.html">
< IMG WIDTH = "63" HEIGHT = "24" ALIGN = "BOTTOM" BORDER = "0" ALT = "previous" SRC = "prev.png" > < / A >
< A NAME = "tex2html218"
HREF="node2.html">
< IMG WIDTH = "65" HEIGHT = "24" ALIGN = "BOTTOM" BORDER = "0" ALT = "contents" SRC = "contents.png" > < / A >
< BR >
< B > Next:< / B > < A NAME = "tex2html221"
HREF="node13.html">Getting Started< / A >
< B > Up:< / B > < A NAME = "tex2html217"
HREF="node11.html">Multigrid Background< / A >
< B > Previous:< / B > < A NAME = "tex2html213"
HREF="node11.html">Multigrid Background< / A >
< B > < A NAME = "tex2html219"
HREF="node2.html">Contents< / A > < / B >
< BR >
< BR >
<!-- End of Navigation Panel -->
< H2 > < A NAME = "SECTION00061000000000000000" > < / A > < A NAME = "sec:multilevel" > < / A >
< BR >
AMG preconditioners
< / H2 >
In order to describe the AMG preconditioners available in MLD2P4, we consider a
linear system
< BR >
< DIV ALIGN = "RIGHT" >
<!-- MATH
\begin{equation}
Ax=b,
\end{equation}
-->
< TABLE WIDTH = "100%" ALIGN = "CENTER" >
< TR VALIGN = "MIDDLE" > < TD ALIGN = "CENTER" NOWRAP > < A NAME = "eq:system" > < / A > < IMG
WIDTH="58" HEIGHT="30" BORDER="0"
SRC="img1.png"
ALT="\begin{displaymath}
Ax=b,
\end{displaymath}">< / TD >
< TD WIDTH = 10 ALIGN = "RIGHT" >
(2)< / TD > < / TR >
< / TABLE >
< BR CLEAR = "ALL" > < / DIV > < P > < / P >
where <!-- MATH
$A=(a_{ij}) \in \mathbb{R}^{n \times n}$
-->
< IMG
WIDTH="137" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
SRC="img4.png"
ALT="$A=(a_{ij}) \in \mathbb{R}^{n \times n}$"> is a nonsingular sparse matrix;
for ease of presentation we assume < IMG
WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img2.png"
ALT="$A$"> is real, but the
results are valid for the complex case as well.
Let us assume as finest index space the set of row (column) indices of < IMG
WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img2.png"
ALT="$A$">, i.e.,
<!-- MATH
$\Omega = \{1, 2, \ldots, n\}$
-->
< IMG
WIDTH="132" HEIGHT="36" ALIGN="MIDDLE" BORDER="0"
SRC="img5.png"
ALT="$\Omega = \{1, 2, \ldots, n\}$">.
Any algebraic multilevel preconditioners implemented in MLD2P4 generates
a hierarchy of index spaces and a corresponding hierarchy of matrices,
< BR > < P > < / P >
< DIV ALIGN = "CENTER" >
<!-- MATH
\begin{displaymath}
\Omega^1 \equiv \Omega \supset \Omega^2 \supset \ldots \supset \Omega^{nlev},
\quad A^1 \equiv A, A^2, \ldots, A^{nlev},
\end{displaymath}
-->
< IMG
WIDTH="398" HEIGHT="30" BORDER="0"
SRC="img6.png"
ALT="\begin{displaymath}\Omega^1 \equiv \Omega \supset \Omega^2 \supset \ldots \supset \Omega^{nlev},
\quad A^1 \equiv A, A^2, \ldots, A^{nlev}, \end{displaymath}">
< / DIV >
< BR CLEAR = "ALL" >
< P > < / P >
by using the information contained in < IMG
WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img2.png"
ALT="$A$">, without assuming any
knowledge of the geometry of the problem from which < IMG
WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img2.png"
ALT="$A$"> originates.
A vector space <!-- MATH
$\mathbb{R}^{n_{k}}$
-->
< IMG
WIDTH="34" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img7.png"
ALT="$\mathbb{R}^{n_{k}}$"> is associated with < IMG
WIDTH="25" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img8.png"
ALT="$\Omega^k$">,
where < IMG
WIDTH="23" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
SRC="img9.png"
ALT="$n_k$"> is the size of < IMG
WIDTH="25" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img8.png"
ALT="$\Omega^k$">.
For all < IMG
WIDTH="70" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img10.png"
ALT="$k < nlev$">, a restriction operator and a prolongation one are built,
which connect two levels < IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img11.png"
ALT="$k$"> and < IMG
WIDTH="44" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img12.png"
ALT="$k+1$">:
< BR > < P > < / P >
< DIV ALIGN = "CENTER" >
<!-- MATH
\begin{displaymath}
P^k \in \mathbb{R}^{n_k \times n_{k+1}}, \quad
R^k \in \mathbb{R}^{n_{k+1}\times n_k};
\end{displaymath}
-->
< IMG
WIDTH="255" HEIGHT="30" BORDER="0"
SRC="img13.png"
ALT="\begin{displaymath}
P^k \in \mathbb{R}^{n_k \times n_{k+1}}, \quad
R^k \in \mathbb{R}^{n_{k+1}\times n_k};
\end{displaymath}">
< / DIV >
< BR CLEAR = "ALL" >
< P > < / P >
< BR > < HR >
< / BODY >
< / HTML >