You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
amg4psblas/docs/src/userinterface.tex

599 lines
30 KiB
TeX

\section{User Interface\label{sec:userinterface}}
\markboth{\textsc{MLD2P4 User's and Reference Guide}}
{\textsc{\ref{sec:userinterface} User Interface}}
The basic user interface of MLD2P4 consists of six routines. The four
routines \verb|mld_| \verb|precinit|, \verb|mld_precset|,
\verb|mld_precbld| and \verb|mld_precaply| encapsulate all the
functionalities for the setup and the application of any one-level and
multi-level preconditioner implemented in the package.
The routine \verb|mld_precfree| deallocates the preconditioner data structure, while
\verb|mld_precdescr| prints a description of the preconditioner setup by the user.
For each routine, the same user interface is overloaded with
respect to the real/complex case and the single/double precision;
arguments with appropriate data types must be passed to the routine,
i.e.
\begin{itemize}
\item the sparse matrix data structure, containing the matrix to be
preconditioned, must be of type \verb|psb_|\emph{x}\verb|spmat_type|
with \emph{x} = \verb|s| for real single precision, \emph{x} = \verb|d|
for real double precision, \emph{x} = \verb|c| for complex single precision,
\emph{x} = \verb|z| for complex double precision;
\item the preconditioner data structure must be of type
\verb|mld_|\emph{x}\verb|prec_type|, with \emph{x} =
\verb|s|, \verb|d|, \verb|c|, \verb|z|, according to the sparse
matrix data structure;
\item the arrays containing the vectors $v$ and $w$ involved in
the preconditioner application $w=M^{-1}v$ must be of type
\verb|psb_|\emph{x}\verb|vect_type| with \emph{x} =
\verb|s|, \verb|d|, \verb|c|, \verb|z|, in a manner completely
analogous to the sparse matrix type;
\item real parameters defining the preconditioner must be declared
according to the precision of the sparse matrix and preconditioner
data structures (see Section~\ref{sec:precset}).
\end{itemize}
A description of each routine is given in the remainder of this section.
\clearpage
\subsection{Subroutine mld\_precinit\label{sec:precinit}}
\begin{center}
\verb|mld_precinit(p,ptype,info)| \\
\verb|mld_precinit(p,ptype,info,nlev)| \\
\end{center}
\noindent
This routine allocates and initializes the preconditioner data structure,
according to the preconditioner type chosen by the user.
{\vskip2\baselineskip\noindent\large\bfseries Arguments}
\begin{tabular}{p{1.2cm}p{12cm}}
\verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\
& The preconditioner data structure. Note that \emph{x}
must be chosen according to the real/complex, single/double
precision version of MLD2P4 under use.\\
\verb|ptype| & \verb|character(len=*), intent(in)|.\\
& The type of preconditioner. Its values are specified
in Table~\ref{tab:precinit}.\\
& Note that the strings are case insensitive.\\
\verb|info| & \verb|integer, intent(out)|.\\
& Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\
\verb|nlev| & \verb|integer, optional, intent(in)|.\\
& The number of levels of the multilevel
preconditioner. This optional argument is deprecated,
new codes should set the number of levels with \verb|mld_precset|.\\
% If \verb|nlev| is not present and \verb|ptype|=\verb|'ML'|, \verb|'ml'|,
% then \verb|nlev|=2 is assumed. Otherwise, \verb|nlev| is ignored.\\
\end{tabular}
\clearpage
\subsection{Subroutine mld\_precset\label{sec:precset}}
\begin{center}
\verb|call mld_precset(p,what,val,info)|
\end{center}
\noindent
This routine sets the parameters defining the preconditioner. More
precisely, the parameter identified by \verb|what| is assigned the value
contained in \verb|val|.
The routine may also be invoked as a method
of the preconditioner object as in the following:
\begin{center}
\verb|call p%set(what,val,info [,ilev, pos])|\\
\end{center}
In this case it is also possible to specify an optional \verb|ilev|
argument that restricts the effect of
the call to the specified level.
Finally, if the user has developed a new type of smoother and/or
solver by extending one of the base MLD2P4 types, and has declared a
variable of the new type in the main program, it is possible to pass
the new smoother/solver variable to the setup routine as follows:
\begin{center}
\verb|call p%set(smoother,info [,ilev ,pos])|\\
\verb|call p%set(solver,info [,ilev ,pos])|
\end{center}
In this way, the variable will act as a \emph{mold} to which the
preconditioner will conform, even though the MLD2P4 library is not
modified, and thus has no direct knowledge about the new type.
{\vskip2\baselineskip\noindent\large\bfseries Arguments}
\begin{tabular}{p{1.2cm}p{12cm}}
\verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\
& The preconditioner data structure. Note that \emph{x} must
be chosen according to the real/complex, single/double precision
version of MLD2P4 under use.\\
\verb|what| & \verb|integer, intent(in)| \emph{or} \verb|character(len=*)|. \\
& The parameter to be set. It can be specified by
a predefined constant, or through its name; the string
is case-insensitive. See also
Tables~\ref{tab:p_type}-\ref{tab:p_coarse}.\\
\verb|val | & \verb|integer| \emph{or} \verb|character(len=*)| \emph{or}
\verb|real(psb_spk_)| \emph{or} \verb|real(psb_dpk_)|,
\verb|intent(in)|.\\
& The value of the parameter to be set. The list of allowed
values and the corresponding data types is given in
Tables~\ref{tab:p_type}-\ref{tab:p_coarse}.
When the value is of type \verb|character(len=*)|,
it is also treated as case insensitive.\\
\verb|smoother| & \verb|class(mld_x_base_smoother_type)| \\
& The user-defined new smoother to be employed in the
preconditioner.\\
\verb|solver| & \verb|class(mld_x_base_solver_type)| \\
& The user-defined new solver to be employed in the
preconditioner.\\
\verb|info| & \verb|integer, intent(out)|.\\
& Error code. If no error, 0 is returned. See Section~\ref{sec:errors}
for details.\\
\verb|pos| & \verb|charater(len=*), intent(in)|.\\
& Whether the other arguments apply to the \verb|'PRE'|
or to the \verb|'POST'| smoothers.\\
%
%\verb|ilev| & \verb|integer, optional, intent(in)|.\\
% & For the multilevel preconditioner, the level at which the
% preconditioner parameter has to be set.
% The levels are numbered in increasing
% order starting from the finest one, i.e.\ level 1 is the finest level.
% If \verb|ilev| is not present, the parameter identified by \verb|what|
% is set at all the appropriate levels (see Table~\ref{tab:params}).
\end{tabular}
\ \\
A variety of (one-level and multi-level) preconditioners can be obtained
by a suitable setting of the preconditioner parameters. These parameters
can be logically divided into four groups, i.e.\ parameters defining
\begin{enumerate}
\item the type of multi-level preconditioner;
\item the one-level preconditioner used as smoother;
\item the aggregation algorithm;
\item the coarse-space correction at the coarsest level.
\end{enumerate}
A list of the parameters that can be set, along with their allowed and
default values, is given in Tables~\ref{tab:p_type}-\ref{tab:p_coarse}.
For a detailed description of the meaning of the parameters, please
refer to Section~\ref{sec:background}.
%
The smoother and solver objects are arranged in a hierarchical manner;
when specifying a smoother object, its parameters including the
contained solver are set to default values, and when a solver
object is specified its defaults are also set, overriding in both
cases any previous settings even if explicitly specified. Therefore if
the user sets a new smoother, and wishes to use a solver
different from the default one, the call to set the solver must come
\emph{after} the call to set the smoother.
%
The combination of a Jacobi smoother with a Diagonal Scaling local
solver is equivalent to the strategy called Point Jacobi in the
literature; similarly, having a Jacobi smoother with a Gauss-Seidel
local solver is equivalent to a ``hybrid Gauss-Seidel'' solver.
Completely new smoother and/or solver class derived from the
base objects in the library may be used without recompiling the
library itself. Once the new smoother/solver class has been
developed, the user can declare a variable of that new type in the
application, and pass that variable to the \verb|p%set(solver,info)|
call; the new solver object is then dynamically included in the
preconditioner structure.
The \verb|what,val| pairs described here are those of the predefined
smoother/solver objects; newly developed solvers may define new pairs
according to their needs.
\bsideways
\begin{center}
\begin{tabular}{|p{5cm}|l|p{2cm}|l|p{7cm}|}
\hline
\verb|what| & \textsc{data type} & \verb|val| & \textsc{default} &
\textsc{comments} \\ \hline
%\multicolumn{5}{|c|}{\emph{type of the multi-level preconditioner}}\\ \hline
\verb|mld_ml_type_| \break \verb|ML_TYPE| & \verb|character(len=*)|
& \texttt{'ADD'} \ \ \ \texttt{'MULT'}
& \texttt{'MULT'}
& Basic multi-level framework: additive or multiplicative
among the levels (always additive inside a level). \\ \hline
\verb|mld_smoother_type_| \break \verb|SMOOTHER_TYPE| & \verb|character(len=*)|
& \texttt{'JACOBI'} \ \ \ \texttt{'BJAC'} \ \ \ \texttt{'AS'}
& \texttt{'AS'}
& Basic predefined one-level preconditioner
(i.e.\ smoother): Jacobi, block Jacobi, AS. \\ \hline
\verb|mld_smoother_pos_| \break \verb|SMOOTHER_POS| & \verb|character(len=*)|
& \texttt{'PRE'} \ \ \ \texttt{'POST'} \ \ \ \texttt{'TWOSIDE'}
mld2p4-2: docs/html/img100.png docs/html/img101.png docs/html/img102.png docs/html/img103.png docs/html/img104.png docs/html/img94.png docs/html/img95.png docs/html/img96.png docs/html/img97.png docs/html/img98.png docs/html/img99.png docs/html/node12.html docs/html/node14.html docs/html/node15.html docs/html/node18.html docs/html/node20.html docs/html/node26.html docs/mld2p4-2.0-guide.pdf docs/src/gettingstarted.tex docs/src/userinterface.tex mlprec/archive/mld_c_as_smoother_impl.f90 mlprec/archive/mld_c_onelev_impl.f90 mlprec/archive/mld_d_as_smoother_impl.f90 mlprec/archive/mld_d_onelev_impl.f90 mlprec/archive/mld_s_as_smoother_impl.f90 mlprec/archive/mld_s_onelev_impl.f90 mlprec/archive/mld_z_as_smoother_impl.f90 mlprec/impl/level/mld_c_base_onelev_check.f90 mlprec/impl/level/mld_d_base_onelev_check.f90 mlprec/impl/level/mld_s_base_onelev_check.f90 mlprec/impl/level/mld_z_base_onelev_check.f90 mlprec/impl/mld_cmlprec_bld.f90 mlprec/impl/mld_dmlprec_bld.f90 mlprec/impl/mld_smlprec_bld.f90 mlprec/impl/mld_z_onelev_impl.f90 mlprec/impl/mld_zmlprec_bld.f90 mlprec/impl/smoother/mld_c_as_smoother_check.f90 mlprec/impl/smoother/mld_d_as_smoother_check.f90 mlprec/impl/smoother/mld_s_as_smoother_check.f90 mlprec/impl/smoother/mld_z_as_smoother_check.f90 mlprec/mld_base_prec_type.F90 mlprec/mld_c_ilu_solver.f90 mlprec/mld_d_ilu_solver.f90 mlprec/mld_s_ilu_solver.f90 mlprec/mld_z_ilu_solver.f90 tests/fileread/Makefile tests/fileread/df_sample.f90 tests/fileread/runs/dfs.inp Unify checks for INT nonnegative or positive.
9 years ago
& \texttt{'TWOSIDE'}
& ``Position'' of the smoother: pre-smoother, post-smoother,
pre- and post-smoother. \\
\hline
\end{tabular}
\end{center}
\caption{Parameters defining the type of multi-level preconditioner.
\label{tab:p_type}}
\esideways
\bsideways
\begin{center}
\begin{tabular}{|p{3.5cm}|l|p{3.2cm}|l|p{5cm}|}
\hline
\verb|what| & \textsc{data type} & \verb|val| & \textsc{default} &
\textsc{comments} \\ \hline
%\multicolumn{5}{|c|}{\emph{basic one-level preconditioner (smoother)}} \\ \hline
\verb|mld_sub_ovr_| \break \verb|SUB_OVR| & \verb|integer|
& any~int.~num.~$\ge 0$
& 1
& Number of overlap layers. \\ \hline
\verb|mld_sub_restr_| \break \verb|SUB_RESTR| & \verb|character(len=*)|
& \texttt{'HALO'} \hspace{2.5cm} \texttt{'NONE'}
& \texttt{'HALO'}
& Type of restriction operator:
\texttt{'HALO'} for taking into account the overlap, \texttt{'NONE'}
for neglecting it. \\ \hline
\verb|mld_sub_prol_| \break \verb|SUB_PROL| & \verb|character(len=*)|
& \texttt{'SUM'} \hspace{2.5cm} \texttt{'NONE'}
& \texttt{'NONE'}
& Type of prolongation operator:
\texttt{'SUM'} for adding the contributions from the overlap, \texttt{'NONE'}
for neglecting them. \\ \hline
\verb|mld_sub_solve_| \break \verb|SUB_SOLVE| & \verb|character(len=*)|
& \texttt{'DIAG'} \hspace{2.5cm}
\texttt{'GS'} \hspace{2.5cm} \texttt{'BWGS'} \hspace{2.5cm}
\texttt{'ILU'} \hspace{2.5cm}
\texttt{'MILU'} \hspace{2.5cm} \texttt{'ILUT'}
\hspace{2.5cm}
\texttt{'UMF'} \hspace{2.5cm}
\texttt{'SLU'}
\hspace{2.5cm} \texttt{'MUMPS'}
& \texttt{'ILU'}
& Predefined local solver: pointwise Jacobi
(diagonal scaling),
(forward) Gauss-Seidel, Backward
Gauss-Seidel, ILU($p$), MILU($p$),
ILU($p,t$), LU from UMFPACK, LU from
SuperLU (plus triangular solve), LU from MUMPS. \\ \hline
\verb|mld_sub_fillin_| \break \verb|SUB_FILLIN| & \verb|integer|
& Any~int.~num.~$\ge 0$
& 0
& Fill-in level $p$ of the incomplete LU factorizations. \\ \hline
\verb|mld_sub_iluthrs_| \break \verb|SUB_ILUTHRS| & \verb|real(|\emph{kind\_parameter}\verb|)|
& Any~real~num.~$\ge 0$
& 0
& Drop tolerance $t$ in the ILU($p,t$) factorization. \\ \hline
\verb|mld_sub_ren_| \break \verb|SUB_REN| & \verb|character(len=*)|
& \texttt{'RENUM\_NONE'} \texttt{'RENUM\_GLOBAL'} %, \texttt{'RENUM_GPS'}
& \texttt{'RENUM\_NONE'}
& Row and column reordering of the local submatrices: no reordering,
reordering according to the global numbering of the rows and columns of
the whole matrix. \\
\verb|mld_solver_sweeps_| \break \verb|SOLVER_SWEEPS| & \verb|integer|
& Any~int.~num.~$\ge 1$
& 1
& Number of sweeps for iterative local solver
(currently only Gauss-Seidel). \\ \hline
% \verb|mld_solver_eps_| \break \verb|SOLVER_EPS| & \verb|real|
% & Any~real~num.
% & 0
% & Stopping tolerance for iterative local solver
% (currently only Gauss-Seidel); if $\le0$, then
% perform prespecified number of iterations. \\ \hline
\hline
\end{tabular}
\end{center}
\caption{Parameters defining the one-level preconditioner used as smoother.
\label{tab:p_smoother}}
\esideways
\bsideways
\begin{center}
\begin{tabular}{|p{5cm}|l|p{2.4cm}|p{2.4cm}|p{6cm}|}
\hline
\verb|what| & \textsc{data type} & \verb|val| & \textsc{default} &
\textsc{comments} \\ \hline
%\multicolumn{5}{|c|}{\emph{aggregation algorithm}} \\ \hline
\verb|mld_coarse_aggr_size_| \break \verb|COARSE_AGGR_SIZE| & \verb|integer|
& A positive number
& The cubic root of
the matrix size at the fine level.
& Coarse size threshold. Aggregation will
proceed until either the global number of
variables is below this threshold, or the
aggregation does not reduce the size any
longer, or the maximum number of levels is
reached. \\ \hline
\verb|mld_min_aggr_ratio| \break \verb|MIN_AGGR_RATIO| & \verb|real|
& A number greater than one
& 1.5
& Minimum aggregation ratio. Aggregation will
stop if the ratio between the matrix sizes
at two consecutive levels drops below this
threshold.\\ \hline
\verb|mld_n_prec_levs_| \break \verb|N_PREC_LEVS| & \verb|integer|
& A number greater than 1, or -1.
& -1
& Number of levels; if set to a positive
number greater than 1, it will force the
aggregation algorithm to use this many
levels (unless there is no reduction in the
coarse matrix size). \\ \hline
\verb|mld_max_prec_levs_| \break \verb|MAX_PREC_LEVS| & \verb|integer|
& A positive number
& 20
& Maximum number of levels: irrespective of
the other settings, do not use more than
this many levels. \\ \hline
\verb|mld_aggr_alg_| \break \verb|AGGR_ALG| & \verb|character(len=*)|
& \texttt{'DEC'}, \texttt{'SYMDEC'}
& \texttt{'DEC'}
& Aggregation algorithm. Currently, only the
decoupled aggregation is available; the
\verb|SYMDEC| option applies decoupled
aggregation to the sparsity pattern
of $A+A^T$.\\ \hline
mld2p4-2: docs/src/userinterface.tex mlprec/impl/level/mld_c_base_onelev_cseti.f90 mlprec/impl/level/mld_c_base_onelev_seti.f90 mlprec/impl/level/mld_d_base_onelev_cseti.f90 mlprec/impl/level/mld_d_base_onelev_seti.f90 mlprec/impl/level/mld_s_base_onelev_cseti.f90 mlprec/impl/level/mld_s_base_onelev_seti.f90 mlprec/impl/level/mld_z_base_onelev_cseti.f90 mlprec/impl/level/mld_z_base_onelev_seti.f90 mlprec/impl/mld_c_dec_map_bld.f90 mlprec/impl/mld_caggrmap_bld.f90 mlprec/impl/mld_ccoarse_bld.f90 mlprec/impl/mld_ccprecset.F90 mlprec/impl/mld_cprecinit.F90 mlprec/impl/mld_cprecset.F90 mlprec/impl/mld_d_dec_map_bld.f90 mlprec/impl/mld_daggrmap_bld.f90 mlprec/impl/mld_dcoarse_bld.f90 mlprec/impl/mld_dcprecset.F90 mlprec/impl/mld_dprecinit.F90 mlprec/impl/mld_dprecset.F90 mlprec/impl/mld_s_dec_map_bld.f90 mlprec/impl/mld_saggrmap_bld.f90 mlprec/impl/mld_scoarse_bld.f90 mlprec/impl/mld_scprecset.F90 mlprec/impl/mld_sprecinit.F90 mlprec/impl/mld_sprecset.F90 mlprec/impl/mld_z_dec_map_bld.f90 mlprec/impl/mld_zaggrmap_bld.f90 mlprec/impl/mld_zcoarse_bld.f90 mlprec/impl/mld_zcprecset.F90 mlprec/impl/mld_zprecinit.F90 mlprec/impl/mld_zprecset.F90 mlprec/mld_base_prec_type.F90 mlprec/mld_c_inner_mod.f90 mlprec/mld_c_onelev_mod.f90 mlprec/mld_d_base_solver_mod.f90 mlprec/mld_d_inner_mod.f90 mlprec/mld_d_onelev_mod.f90 mlprec/mld_d_prec_type.f90 mlprec/mld_d_umf_solver.F90 mlprec/mld_s_inner_mod.f90 mlprec/mld_s_onelev_mod.f90 mlprec/mld_z_inner_mod.f90 mlprec/mld_z_onelev_mod.f90 tests/pdegen/ppde2d.f90 tests/pdegen/ppde3d.f90 tests/pdegen/runs/ppde.inp tests/pdegen/spde2d.f90 tests/pdegen/spde3d.f90 Added option to apply ordering while aggregating.
9 years ago
\verb|mld_aggr_ord_| \break \verb|AGGR_ORD| & \verb|character(len=*)|
& \texttt{'NATURAL'}
mld2p4-2: docs/src/userinterface.tex mlprec/impl/level/mld_c_base_onelev_cseti.f90 mlprec/impl/level/mld_c_base_onelev_seti.f90 mlprec/impl/level/mld_d_base_onelev_cseti.f90 mlprec/impl/level/mld_d_base_onelev_seti.f90 mlprec/impl/level/mld_s_base_onelev_cseti.f90 mlprec/impl/level/mld_s_base_onelev_seti.f90 mlprec/impl/level/mld_z_base_onelev_cseti.f90 mlprec/impl/level/mld_z_base_onelev_seti.f90 mlprec/impl/mld_c_dec_map_bld.f90 mlprec/impl/mld_caggrmap_bld.f90 mlprec/impl/mld_ccoarse_bld.f90 mlprec/impl/mld_ccprecset.F90 mlprec/impl/mld_cprecinit.F90 mlprec/impl/mld_cprecset.F90 mlprec/impl/mld_d_dec_map_bld.f90 mlprec/impl/mld_daggrmap_bld.f90 mlprec/impl/mld_dcoarse_bld.f90 mlprec/impl/mld_dcprecset.F90 mlprec/impl/mld_dprecinit.F90 mlprec/impl/mld_dprecset.F90 mlprec/impl/mld_s_dec_map_bld.f90 mlprec/impl/mld_saggrmap_bld.f90 mlprec/impl/mld_scoarse_bld.f90 mlprec/impl/mld_scprecset.F90 mlprec/impl/mld_sprecinit.F90 mlprec/impl/mld_sprecset.F90 mlprec/impl/mld_z_dec_map_bld.f90 mlprec/impl/mld_zaggrmap_bld.f90 mlprec/impl/mld_zcoarse_bld.f90 mlprec/impl/mld_zcprecset.F90 mlprec/impl/mld_zprecinit.F90 mlprec/impl/mld_zprecset.F90 mlprec/mld_base_prec_type.F90 mlprec/mld_c_inner_mod.f90 mlprec/mld_c_onelev_mod.f90 mlprec/mld_d_base_solver_mod.f90 mlprec/mld_d_inner_mod.f90 mlprec/mld_d_onelev_mod.f90 mlprec/mld_d_prec_type.f90 mlprec/mld_d_umf_solver.F90 mlprec/mld_s_inner_mod.f90 mlprec/mld_s_onelev_mod.f90 mlprec/mld_z_inner_mod.f90 mlprec/mld_z_onelev_mod.f90 tests/pdegen/ppde2d.f90 tests/pdegen/ppde3d.f90 tests/pdegen/runs/ppde.inp tests/pdegen/spde2d.f90 tests/pdegen/spde3d.f90 Added option to apply ordering while aggregating.
9 years ago
& \texttt{'DEGREE'}
& Initial ordering of indices for aggregation
algorithm: natural ordering or sorted by
descending degree of the node in the
matrix graph. Since aggregation is
heuristics, results will be different. \\ \hline
\verb|mld_aggr_kind_| \break \verb|AGGR_KIND| & \verb|character(len=*)|
& \texttt{'SMOOTHED'} \hspace{2.5cm} \texttt{'NONSMOOTHED'}
& \texttt{'SMOOTHED'}
& Type of aggregation: smoothed, nonsmoothed
(i.e.\ using the tentative prolongator). \\ \hline
\verb|mld_aggr_thresh_| \break \verb|AGGR_THRESH| & \verb|real(|\emph{kind\_parameter}\verb|)|
& Any~real~num. $\in [0, 1]$
mld2p4-2: docs/html/img100.png docs/html/img101.png docs/html/img102.png docs/html/img103.png docs/html/img104.png docs/html/img94.png docs/html/img95.png docs/html/img96.png docs/html/img97.png docs/html/img98.png docs/html/img99.png docs/html/node12.html docs/html/node14.html docs/html/node15.html docs/html/node18.html docs/html/node20.html docs/html/node26.html docs/mld2p4-2.0-guide.pdf docs/src/gettingstarted.tex docs/src/userinterface.tex mlprec/archive/mld_c_as_smoother_impl.f90 mlprec/archive/mld_c_onelev_impl.f90 mlprec/archive/mld_d_as_smoother_impl.f90 mlprec/archive/mld_d_onelev_impl.f90 mlprec/archive/mld_s_as_smoother_impl.f90 mlprec/archive/mld_s_onelev_impl.f90 mlprec/archive/mld_z_as_smoother_impl.f90 mlprec/impl/level/mld_c_base_onelev_check.f90 mlprec/impl/level/mld_d_base_onelev_check.f90 mlprec/impl/level/mld_s_base_onelev_check.f90 mlprec/impl/level/mld_z_base_onelev_check.f90 mlprec/impl/mld_cmlprec_bld.f90 mlprec/impl/mld_dmlprec_bld.f90 mlprec/impl/mld_smlprec_bld.f90 mlprec/impl/mld_z_onelev_impl.f90 mlprec/impl/mld_zmlprec_bld.f90 mlprec/impl/smoother/mld_c_as_smoother_check.f90 mlprec/impl/smoother/mld_d_as_smoother_check.f90 mlprec/impl/smoother/mld_s_as_smoother_check.f90 mlprec/impl/smoother/mld_z_as_smoother_check.f90 mlprec/mld_base_prec_type.F90 mlprec/mld_c_ilu_solver.f90 mlprec/mld_d_ilu_solver.f90 mlprec/mld_s_ilu_solver.f90 mlprec/mld_z_ilu_solver.f90 tests/fileread/Makefile tests/fileread/df_sample.f90 tests/fileread/runs/dfs.inp Unify checks for INT nonnegative or positive.
9 years ago
& 0.05
& Threshold $\theta$ in the aggregation algorithm. \\ \hline
mld2p4-2: docs/html/img100.png docs/html/img101.png docs/html/img102.png docs/html/img103.png docs/html/img104.png docs/html/img94.png docs/html/img95.png docs/html/img96.png docs/html/img97.png docs/html/img98.png docs/html/img99.png docs/html/node12.html docs/html/node14.html docs/html/node15.html docs/html/node18.html docs/html/node20.html docs/html/node26.html docs/mld2p4-2.0-guide.pdf docs/src/gettingstarted.tex docs/src/userinterface.tex mlprec/archive/mld_c_as_smoother_impl.f90 mlprec/archive/mld_c_onelev_impl.f90 mlprec/archive/mld_d_as_smoother_impl.f90 mlprec/archive/mld_d_onelev_impl.f90 mlprec/archive/mld_s_as_smoother_impl.f90 mlprec/archive/mld_s_onelev_impl.f90 mlprec/archive/mld_z_as_smoother_impl.f90 mlprec/impl/level/mld_c_base_onelev_check.f90 mlprec/impl/level/mld_d_base_onelev_check.f90 mlprec/impl/level/mld_s_base_onelev_check.f90 mlprec/impl/level/mld_z_base_onelev_check.f90 mlprec/impl/mld_cmlprec_bld.f90 mlprec/impl/mld_dmlprec_bld.f90 mlprec/impl/mld_smlprec_bld.f90 mlprec/impl/mld_z_onelev_impl.f90 mlprec/impl/mld_zmlprec_bld.f90 mlprec/impl/smoother/mld_c_as_smoother_check.f90 mlprec/impl/smoother/mld_d_as_smoother_check.f90 mlprec/impl/smoother/mld_s_as_smoother_check.f90 mlprec/impl/smoother/mld_z_as_smoother_check.f90 mlprec/mld_base_prec_type.F90 mlprec/mld_c_ilu_solver.f90 mlprec/mld_d_ilu_solver.f90 mlprec/mld_s_ilu_solver.f90 mlprec/mld_z_ilu_solver.f90 tests/fileread/Makefile tests/fileread/df_sample.f90 tests/fileread/runs/dfs.inp Unify checks for INT nonnegative or positive.
9 years ago
\verb|mld_aggr_scale_| \break \verb|AGGR_SCALE| & \verb|real(|\emph{kind\_parameter}\verb|)|
& Any~real~num. $\in [0, 1]$
& 1.0
& Scale factor applied to the threshold going
from level $ilev$ to level $ilev+1$. \\ \hline
\verb|mld_aggr_omega_alg_| \break \verb|AGGR_OMEGA_ALG|& \verb|character(len=*)|
& \texttt{'EIG\_EST'} \hspace{2.5cm} \texttt{'USER\_CHOICE'}
& \texttt{'EIG\_EST'}
& How the damping parameter $\omega$ in the
smoothed aggregation should be computed:
either via an estimate of the spectral radius of
$D^{-1}A$, or explicily
specified by the user. \\ \hline
\verb|mld_aggr_eig_| \break \verb|AGGR_EIG| & \verb|character(len=*)|
& \texttt{'A\_NORMI'}
& \texttt{'A\_NORMI'}
& How to estimate the spectral radius of $D^{-1}A$.
Currently only the infinity norm estimate
is available. \\ \hline
\verb|mld_aggr_omega_val_| \break \verb|AGGR_OMEGA_VAL| & \verb|real(|\emph{kind\_parameter}\verb|)|
& Any~nonnegative~real~num.
& $4/(3\rho(D^{-1}A))$
& Damping parameter $\omega$ in the smoothed aggregation algorithm.
It must be set by the user if
\verb|USER_CHOICE| was specified for
\verb|mld_aggr_omega_alg_|,
otherwise it is computed by the library, using the
selected estimate of the spectral radius $\rho(D^{-1}A)$ of
$D^{-1}A$.\\
\hline
\end{tabular}
\end{center}
\caption{Parameters defining the aggregation algorithm.
\label{tab:p_aggregation}}
\esideways
\bsideways
\begin{center}
\begin{tabular}{|p{3.5cm}|l|p{3.2cm}|l|p{5cm}|}
\hline
\verb|what| & \textsc{data type} & \verb|val| & \textsc{default} &
\textsc{comments} \\ \hline
%\multicolumn{5}{|c|}{\emph{coarse-space correction at the coarsest level}}\\ \hline
\verb|mld_coarse_mat_| \break \verb|COARSE_MAT| & \verb|character(len=*)|
& \texttt{'DISTR'} \hspace{2.5cm} \texttt{'REPL'}
& \texttt{'DISTR'}
& Coarsest matrix: distributed among the processors or
replicated on each of them. \\ \hline
\verb|mld_coarse_solve_| \break \verb|COARSE_SOLVE| & \verb|character(len=*)|
& \texttt{'BJAC'} \hspace{2.5cm}
\texttt{'UMF'} \hspace{2.5cm} \texttt{'MUMPS'} \hspace{2.5cm}
\texttt{'SLU'} \hspace{2.5cm} \texttt{'SLUDIST'}
& \texttt{'BJAC'}
& Solver used at the coarsest level: block Jacobi, sequential
LU from UMFPACK, sequential LU from SuperLU,
distributed LU from SuperLU\_Dist or MUMPS.
\texttt{'SLUDIST'} and \texttt{'MUMPS'}
require the coarsest matrix to be distributed, while
\texttt{'UMF'} and \texttt{'SLU'} require
it to be replicated. \\ \hline
\verb|mld_coarse_subsolve_| \break \verb|COARSE_SUBSOLVE| & \verb|character(len=*)|
& \texttt{'ILU'} \hspace{2.5cm} \texttt{'MILU'}
\hspace{2.5cm} \texttt{'ILUT'}
\hspace{2.5cm} \texttt{'UMF'}
\hspace{2.5cm} \texttt{'SLU'}
\hspace{2.5cm} \texttt{'MUMPS'}
& See note
& Solver for the diagonal blocks of the coarse matrix,
in case the block Jacobi solver
is chosen as coarsest-level solver: ILU($p$), MILU($p$),
ILU($p,t$), LU from UMFPACK,
LU from SuperLU, plus triangular solve. \\ \hline
\verb|mld_coarse_sweeps_| \break \verb|COARSE_SWEEPS| & \verb|integer|
& Any~int.~num.~$> 0$
& 4
& Number of Block-Jacobi sweeps when 'BJAC' is used as
coarsest-level solver. \\ \hline
\verb|mld_coarse_fillin_| \break \verb|COARSE_FILLIN| & \verb|integer|
& Any~int.~num.~$\ge 0$
& 0
& Fill-in level $p$ of the incomplete LU factorizations. \\ \hline
\verb|mld_coarse_iluthrs_| \break \verb|COARSE_ILUTHRS| & \verb|real(|\emph{kind\_parameter}\verb|)|
& Any~real.~num.~$\ge 0$
& 0
& Drop tolerance $t$ in the ILU($p,t$) factorization. \\
\hline
\multicolumn{5}{|l|}{{\bfseries Note:} defaults for
{\texttt mld\_coarse\_subsolve\_} are chosen as }\\
\multicolumn{5}{|l|}{single precision version: 'MUMPS' if installed, 'SLU' if installed, 'ILU' otherwise}\\
\multicolumn{5}{|l|}{double precision version: 'MUMPS' if installed, 'UMF' if installed,
else 'SLU' if installed, 'ILU' otherwise}\\
\hline
\end{tabular}
\end{center}
\caption{Parameters defining the coarse-space correction at the coarsest
level.\label{tab:p_coarse}}
\esideways
% \par\noindent{\large\bfseries Note}\par\noindent
% The defaults for parameter \verb|mld_coarse_subsolve_| in Table~\ref{tab:p_coarse} are determined
% as follows:
% \begin{description}
% \item[Single precision data:] 'SLU' if installed, 'ILU' otherwise;
% \item[Double precision data:] 'UMF' if installed, else 'SLU' if
% installed, 'ILU' otherwise;
% \end{description}
\clearpage
\subsection{Subroutine mld\_precbld\label{sec:precbld}}
\begin{center}
\verb|mld_precbld(a,desc_a,p,info)|\\
\end{center}
\noindent
This routine builds the preconditioner according to the requirements made by
the user through the routines \verb|mld_precinit| and \verb|mld_precset|.
{\vskip2\baselineskip\noindent\large\bfseries Arguments}
\begin{tabular}{p{1.2cm}p{12cm}}
\verb|a| & \verb|type(psb_|\emph{x}\verb|spmat_type), intent(in)|. \\
& The sparse matrix structure containing the local part of the
matrix to be preconditioned. Note that \emph{x} must be chosen according
to the real/complex,
single/double precision version of MLD2P4 under use.
See the PSBLAS User's Guide for details \cite{PSBLASGUIDE}.\\
\verb|desc_a| & \verb|type(psb_desc_type), intent(in)|. \\
& The communication descriptor of \verb|a|. See the PSBLAS User's Guide for
details \cite{PSBLASGUIDE}.\\
\verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\
& The preconditioner data structure. Note that \emph{x} must be chosen according
to the real/complex, single/double precision version of MLD2P4 under use.\\
\verb|info| & \verb|integer, intent(out)|.\\
& Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\
\end{tabular}
\clearpage
\subsection{Subroutine mld\_precaply\label{sec:precaply}}
\begin{center}
\verb|mld_precaply(p,x,y,desc_a,info)|\\
\verb|mld_precaply(p,x,y,desc_a,info,trans,work)|\\
\end{center}
\noindent
This routine computes $y = op(M^{-1})\, x$, where $M$ is a previously built
preconditioner, stored into \verb|p|, and $op$
denotes the preconditioner itself or its transpose, according to
the value of \verb|trans|.
Note that, when MLD2P4 is used with a Krylov solver from PSBLAS,
\verb|mld_precaply| is called within the PSBLAS routine \verb|psb_krylov|
and hence it is completely transparent to the user.
{\vskip2\baselineskip\noindent\large\bfseries Arguments}
\begin{tabular}{p{1.2cm}p{12cm}}
\verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\
& The preconditioner data structure, containing the local part of $M$.
Note that \emph{x} must be chosen according
to the real/complex, single/double precision version of MLD2P4 under use.\\
\verb|x| & \emph{type}\verb|(|\emph{kind\_parameter}\verb|), dimension(:), intent(in)|.\\
& The local part of the vector $x$. Note that \emph{type} and
\emph{kind\_parameter} must be chosen according
to the real/complex, single/double precision version of MLD2P4 under use.\\
\verb|y| & \emph{type}\verb|(|\emph{kind\_parameter}\verb|), dimension(:), intent(out)|.\\
& The local part of the vector $y$. Note that \emph{type} and
\emph{kind\_parameter} must be chosen according
to the real/complex, single/double precision version of MLD2P4 under use.\\
\verb|desc_a| & \verb|type(psb_desc_type), intent(in)|. \\
& The communication descriptor associated to the matrix to be
preconditioned.\\
\verb|info| & \verb|integer, intent(out)|.\\
& Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\
\verb|trans| & \verb|character(len=1), optional, intent(in).|\\
& If \verb|trans| = \verb|'N','n'| then $op(M^{-1}) = M^{-1}$;
if \verb|trans| = \verb|'T','t'| then $op(M^{-1}) = M^{-T}$
(transpose of $M^{-1})$; if \verb|trans| = \verb|'C','c'| then $op(M^{-1}) = M^{-C}$
(conjugate transpose of $M^{-1})$.\\
\verb|work| & \emph{type}\verb|(|\emph{kind\_parameter}\verb|), dimension(:), optional, target|.\\
& Workspace. Its size should be at
least \verb|4 * psb_cd_get_local_| \verb|cols(desc_a)| (see the PSBLAS User's Guide).
Note that \emph{type} and \emph{kind\_parameter} must be chosen according
to the real/complex, single/double precision version of MLD2P4 under use.\\
\end{tabular}
\clearpage
\subsection{Subroutine mld\_precfree\label{sec:precfree}}
\begin{center}
\verb|mld_precfree(p,info)|\\
\end{center}
\noindent
This routine deallocates the preconditioner data structure.
{\vskip2\baselineskip\noindent\large\bfseries Arguments}
\begin{tabular}{p{1.2cm}p{10.5cm}}
\verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\
& The preconditioner data structure. Note that \emph{x} must be chosen according
to the real/complex, single/double precision version of MLD2P4 under use.\\
\verb|info| & \verb|integer, intent(out)|.\\
& Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\
\end{tabular}
\clearpage
\subsection{Subroutine mld\_precdescr\label{sec:precdescr}}
\begin{center}
\verb|mld_precdescr(p,info)|\\
\verb|mld_precdescr(p,info,iout)|\\
\end{center}
\noindent
This routine prints a description of the preconditioner to the standard output or
to a file. It must be called after \verb|mld_precbld| has been called.
{\vskip2\baselineskip\noindent\large\bfseries Arguments}
\begin{tabular}{p{1.2cm}p{12cm}}
\verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(in)|.\\
& The preconditioner data structure. Note that \emph{x} must be chosen according
to the real/complex, single/double precision version of MLD2P4 under use.\\
\verb|info| & \verb|integer, intent(out)|.\\
& Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\
\verb|iout| & \verb|integer, intent(in), optional|.\\
& The id of the file where the preconditioner description
will be printed; the default is the standard output.\\
\end{tabular}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "userguide"
%%% End: