Added different coeff. generation functions for test
parent
606f4e9567
commit
686612628e
@ -0,0 +1,857 @@
|
||||
module amg_d_genpde_mod
|
||||
|
||||
|
||||
use psb_base_mod, only : psb_dpk_, psb_ipk_, psb_desc_type,&
|
||||
& psb_dspmat_type, psb_d_vect_type, dzero,&
|
||||
& psb_d_base_sparse_mat, psb_d_base_vect_type, psb_i_base_vect_type
|
||||
|
||||
interface
|
||||
function d_func_3d(x,y,z) result(val)
|
||||
import :: psb_dpk_
|
||||
real(psb_dpk_), intent(in) :: x,y,z
|
||||
real(psb_dpk_) :: val
|
||||
end function d_func_3d
|
||||
end interface
|
||||
|
||||
interface amg_gen_pde3d
|
||||
module procedure amg_d_gen_pde3d
|
||||
end interface amg_gen_pde3d
|
||||
|
||||
interface
|
||||
function d_func_2d(x,y) result(val)
|
||||
import :: psb_dpk_
|
||||
real(psb_dpk_), intent(in) :: x,y
|
||||
real(psb_dpk_) :: val
|
||||
end function d_func_2d
|
||||
end interface
|
||||
|
||||
interface amg_gen_pde2d
|
||||
module procedure amg_d_gen_pde2d
|
||||
end interface amg_gen_pde2d
|
||||
|
||||
contains
|
||||
|
||||
function d_null_func_2d(x,y) result(val)
|
||||
|
||||
real(psb_dpk_), intent(in) :: x,y
|
||||
real(psb_dpk_) :: val
|
||||
|
||||
val = dzero
|
||||
|
||||
end function d_null_func_2d
|
||||
|
||||
function d_null_func_3d(x,y,z) result(val)
|
||||
|
||||
real(psb_dpk_), intent(in) :: x,y,z
|
||||
real(psb_dpk_) :: val
|
||||
|
||||
val = dzero
|
||||
|
||||
end function d_null_func_3d
|
||||
|
||||
!
|
||||
! subroutine to allocate and fill in the coefficient matrix and
|
||||
! the rhs.
|
||||
!
|
||||
subroutine amg_d_gen_pde3d(ctxt,idim,a,bv,xv,desc_a,afmt,&
|
||||
& a1,a2,a3,b1,b2,b3,c,g,info,f,amold,vmold,partition, nrl,iv)
|
||||
use psb_base_mod
|
||||
use psb_util_mod
|
||||
!
|
||||
! Discretizes the partial differential equation
|
||||
!
|
||||
! d a1 d(u) d a1 d(u) d a1 d(u) b1 d(u) b2 d(u) b3 d(u)
|
||||
! - ------ - ------ - ------ + ----- + ------ + ------ + c u = f
|
||||
! dx dx dy dy dz dz dx dy dz
|
||||
!
|
||||
! with Dirichlet boundary conditions
|
||||
! u = g
|
||||
!
|
||||
! on the unit cube 0<=x,y,z<=1.
|
||||
!
|
||||
!
|
||||
! Note that if b1=b2=b3=c=0., the PDE is the Laplace equation.
|
||||
!
|
||||
implicit none
|
||||
procedure(d_func_3d) :: b1,b2,b3,c,a1,a2,a3,g
|
||||
integer(psb_ipk_) :: idim
|
||||
type(psb_dspmat_type) :: a
|
||||
type(psb_d_vect_type) :: xv,bv
|
||||
type(psb_desc_type) :: desc_a
|
||||
integer(psb_ipk_) :: info
|
||||
type(psb_ctxt_type) :: ctxt
|
||||
character :: afmt*5
|
||||
procedure(d_func_3d), optional :: f
|
||||
class(psb_d_base_sparse_mat), optional :: amold
|
||||
class(psb_d_base_vect_type), optional :: vmold
|
||||
integer(psb_ipk_), optional :: partition, nrl,iv(:)
|
||||
|
||||
! Local variables.
|
||||
|
||||
integer(psb_ipk_), parameter :: nb=20
|
||||
type(psb_d_csc_sparse_mat) :: acsc
|
||||
type(psb_d_coo_sparse_mat) :: acoo
|
||||
type(psb_d_csr_sparse_mat) :: acsr
|
||||
real(psb_dpk_) :: zt(nb),x,y,z,xph,xmh,yph,ymh,zph,zmh
|
||||
integer(psb_ipk_) :: nnz,nr,nlr,i,j,ii,ib,k, partition_
|
||||
integer(psb_lpk_) :: m,n,glob_row,nt
|
||||
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
|
||||
! For 3D partition
|
||||
! Note: integer control variables going directly into an MPI call
|
||||
! must be 4 bytes, i.e. psb_mpk_
|
||||
integer(psb_mpk_) :: npdims(3), npp, minfo
|
||||
integer(psb_ipk_) :: npx,npy,npz, iamx,iamy,iamz,mynx,myny,mynz
|
||||
integer(psb_ipk_), allocatable :: bndx(:),bndy(:),bndz(:)
|
||||
! Process grid
|
||||
integer(psb_ipk_) :: np, iam
|
||||
integer(psb_ipk_) :: icoeff
|
||||
integer(psb_lpk_), allocatable :: irow(:),icol(:),myidx(:)
|
||||
real(psb_dpk_), allocatable :: val(:)
|
||||
! deltah dimension of each grid cell
|
||||
! deltat discretization time
|
||||
real(psb_dpk_) :: deltah, sqdeltah, deltah2
|
||||
real(psb_dpk_), parameter :: rhs=dzero,one=done,zero=dzero
|
||||
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
|
||||
integer(psb_ipk_) :: err_act
|
||||
procedure(d_func_3d), pointer :: f_
|
||||
character(len=20) :: name, ch_err,tmpfmt
|
||||
|
||||
info = psb_success_
|
||||
name = 'd_create_matrix'
|
||||
call psb_erractionsave(err_act)
|
||||
|
||||
call psb_info(ctxt, iam, np)
|
||||
|
||||
|
||||
if (present(f)) then
|
||||
f_ => f
|
||||
else
|
||||
f_ => d_null_func_3d
|
||||
end if
|
||||
|
||||
if (present(partition)) then
|
||||
if ((1<= partition).and.(partition <= 3)) then
|
||||
partition_ = partition
|
||||
else
|
||||
write(*,*) 'Invalid partition choice ',partition,' defaulting to 3'
|
||||
partition_ = 3
|
||||
end if
|
||||
else
|
||||
partition_ = 3
|
||||
end if
|
||||
deltah = done/(idim+2)
|
||||
sqdeltah = deltah*deltah
|
||||
deltah2 = 2.0_psb_dpk_* deltah
|
||||
|
||||
if (present(partition)) then
|
||||
if ((1<= partition).and.(partition <= 3)) then
|
||||
partition_ = partition
|
||||
else
|
||||
write(*,*) 'Invalid partition choice ',partition,' defaulting to 3'
|
||||
partition_ = 3
|
||||
end if
|
||||
else
|
||||
partition_ = 3
|
||||
end if
|
||||
|
||||
! initialize array descriptor and sparse matrix storage. provide an
|
||||
! estimate of the number of non zeroes
|
||||
|
||||
m = (1_psb_lpk_*idim)*idim*idim
|
||||
n = m
|
||||
nnz = 7*((n+np-1)/np)
|
||||
if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
|
||||
t0 = psb_wtime()
|
||||
select case(partition_)
|
||||
case(1)
|
||||
! A BLOCK partition
|
||||
if (present(nrl)) then
|
||||
nr = nrl
|
||||
else
|
||||
!
|
||||
! Using a simple BLOCK distribution.
|
||||
!
|
||||
nt = (m+np-1)/np
|
||||
nr = max(0,min(nt,m-(iam*nt)))
|
||||
end if
|
||||
|
||||
nt = nr
|
||||
call psb_sum(ctxt,nt)
|
||||
if (nt /= m) then
|
||||
write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
|
||||
info = -1
|
||||
call psb_barrier(ctxt)
|
||||
call psb_abort(ctxt)
|
||||
return
|
||||
end if
|
||||
|
||||
!
|
||||
! First example of use of CDALL: specify for each process a number of
|
||||
! contiguous rows
|
||||
!
|
||||
call psb_cdall(ctxt,desc_a,info,nl=nr)
|
||||
myidx = desc_a%get_global_indices()
|
||||
nlr = size(myidx)
|
||||
|
||||
case(2)
|
||||
! A partition defined by the user through IV
|
||||
|
||||
if (present(iv)) then
|
||||
if (size(iv) /= m) then
|
||||
write(psb_err_unit,*) iam, 'Initialization error: wrong IV size',size(iv),m
|
||||
info = -1
|
||||
call psb_barrier(ctxt)
|
||||
call psb_abort(ctxt)
|
||||
return
|
||||
end if
|
||||
else
|
||||
write(psb_err_unit,*) iam, 'Initialization error: IV not present'
|
||||
info = -1
|
||||
call psb_barrier(ctxt)
|
||||
call psb_abort(ctxt)
|
||||
return
|
||||
end if
|
||||
|
||||
!
|
||||
! Second example of use of CDALL: specify for each row the
|
||||
! process that owns it
|
||||
!
|
||||
call psb_cdall(ctxt,desc_a,info,vg=iv)
|
||||
myidx = desc_a%get_global_indices()
|
||||
nlr = size(myidx)
|
||||
|
||||
case(3)
|
||||
! A 3-dimensional partition
|
||||
|
||||
! A nifty MPI function will split the process list
|
||||
npdims = 0
|
||||
call mpi_dims_create(np,3,npdims,info)
|
||||
npx = npdims(1)
|
||||
npy = npdims(2)
|
||||
npz = npdims(3)
|
||||
|
||||
allocate(bndx(0:npx),bndy(0:npy),bndz(0:npz))
|
||||
! We can reuse idx2ijk for process indices as well.
|
||||
call idx2ijk(iamx,iamy,iamz,iam,npx,npy,npz,base=0)
|
||||
! Now let's split the 3D cube in hexahedra
|
||||
call dist1Didx(bndx,idim,npx)
|
||||
mynx = bndx(iamx+1)-bndx(iamx)
|
||||
call dist1Didx(bndy,idim,npy)
|
||||
myny = bndy(iamy+1)-bndy(iamy)
|
||||
call dist1Didx(bndz,idim,npz)
|
||||
mynz = bndz(iamz+1)-bndz(iamz)
|
||||
|
||||
! How many indices do I own?
|
||||
nlr = mynx*myny*mynz
|
||||
allocate(myidx(nlr))
|
||||
! Now, let's generate the list of indices I own
|
||||
nr = 0
|
||||
do i=bndx(iamx),bndx(iamx+1)-1
|
||||
do j=bndy(iamy),bndy(iamy+1)-1
|
||||
do k=bndz(iamz),bndz(iamz+1)-1
|
||||
nr = nr + 1
|
||||
call ijk2idx(myidx(nr),i,j,k,idim,idim,idim)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
if (nr /= nlr) then
|
||||
write(psb_err_unit,*) iam,iamx,iamy,iamz, 'Initialization error: NR vs NLR ',&
|
||||
& nr,nlr,mynx,myny,mynz
|
||||
info = -1
|
||||
call psb_barrier(ctxt)
|
||||
call psb_abort(ctxt)
|
||||
end if
|
||||
|
||||
!
|
||||
! Third example of use of CDALL: specify for each process
|
||||
! the set of global indices it owns.
|
||||
!
|
||||
call psb_cdall(ctxt,desc_a,info,vl=myidx)
|
||||
|
||||
case default
|
||||
write(psb_err_unit,*) iam, 'Initialization error: should not get here'
|
||||
info = -1
|
||||
call psb_barrier(ctxt)
|
||||
call psb_abort(ctxt)
|
||||
return
|
||||
end select
|
||||
|
||||
|
||||
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
|
||||
! define rhs from boundary conditions; also build initial guess
|
||||
if (info == psb_success_) call psb_geall(xv,desc_a,info)
|
||||
if (info == psb_success_) call psb_geall(bv,desc_a,info)
|
||||
|
||||
call psb_barrier(ctxt)
|
||||
talc = psb_wtime()-t0
|
||||
|
||||
if (info /= psb_success_) then
|
||||
info=psb_err_from_subroutine_
|
||||
ch_err='allocation rout.'
|
||||
call psb_errpush(info,name,a_err=ch_err)
|
||||
goto 9999
|
||||
end if
|
||||
|
||||
! we build an auxiliary matrix consisting of one row at a
|
||||
! time; just a small matrix. might be extended to generate
|
||||
! a bunch of rows per call.
|
||||
!
|
||||
allocate(val(20*nb),irow(20*nb),&
|
||||
&icol(20*nb),stat=info)
|
||||
if (info /= psb_success_ ) then
|
||||
info=psb_err_alloc_dealloc_
|
||||
call psb_errpush(info,name)
|
||||
goto 9999
|
||||
endif
|
||||
|
||||
|
||||
! loop over rows belonging to current process in a block
|
||||
! distribution.
|
||||
|
||||
call psb_barrier(ctxt)
|
||||
t1 = psb_wtime()
|
||||
do ii=1, nlr,nb
|
||||
ib = min(nb,nlr-ii+1)
|
||||
icoeff = 1
|
||||
do k=1,ib
|
||||
i=ii+k-1
|
||||
! local matrix pointer
|
||||
glob_row=myidx(i)
|
||||
! compute gridpoint coordinates
|
||||
call idx2ijk(ix,iy,iz,glob_row,idim,idim,idim)
|
||||
! x, y, z coordinates
|
||||
x = (ix-1)*deltah
|
||||
y = (iy-1)*deltah
|
||||
z = (iz-1)*deltah
|
||||
zt(k) = f_(x,y,z)
|
||||
! internal point: build discretization
|
||||
!
|
||||
! term depending on (x-1,y,z)
|
||||
!
|
||||
val(icoeff) = -a1(x,y,z)/sqdeltah-b1(x,y,z)/deltah2
|
||||
if (ix == 1) then
|
||||
zt(k) = g(dzero,y,z)*(-val(icoeff)) + zt(k)
|
||||
else
|
||||
call ijk2idx(icol(icoeff),ix-1,iy,iz,idim,idim,idim)
|
||||
irow(icoeff) = glob_row
|
||||
icoeff = icoeff+1
|
||||
endif
|
||||
! term depending on (x,y-1,z)
|
||||
val(icoeff) = -a2(x,y,z)/sqdeltah-b2(x,y,z)/deltah2
|
||||
if (iy == 1) then
|
||||
zt(k) = g(x,dzero,z)*(-val(icoeff)) + zt(k)
|
||||
else
|
||||
call ijk2idx(icol(icoeff),ix,iy-1,iz,idim,idim,idim)
|
||||
irow(icoeff) = glob_row
|
||||
icoeff = icoeff+1
|
||||
endif
|
||||
! term depending on (x,y,z-1)
|
||||
val(icoeff)=-a3(x,y,z)/sqdeltah-b3(x,y,z)/deltah2
|
||||
if (iz == 1) then
|
||||
zt(k) = g(x,y,dzero)*(-val(icoeff)) + zt(k)
|
||||
else
|
||||
call ijk2idx(icol(icoeff),ix,iy,iz-1,idim,idim,idim)
|
||||
irow(icoeff) = glob_row
|
||||
icoeff = icoeff+1
|
||||
endif
|
||||
|
||||
! term depending on (x,y,z)
|
||||
val(icoeff)=(2*done)*(a1(x,y,z)+a2(x,y,z)+a3(x,y,z))/sqdeltah &
|
||||
& + c(x,y,z)
|
||||
call ijk2idx(icol(icoeff),ix,iy,iz,idim,idim,idim)
|
||||
irow(icoeff) = glob_row
|
||||
icoeff = icoeff+1
|
||||
! term depending on (x,y,z+1)
|
||||
val(icoeff)=-a3(x,y,z)/sqdeltah+b3(x,y,z)/deltah2
|
||||
if (iz == idim) then
|
||||
zt(k) = g(x,y,done)*(-val(icoeff)) + zt(k)
|
||||
else
|
||||
call ijk2idx(icol(icoeff),ix,iy,iz+1,idim,idim,idim)
|
||||
irow(icoeff) = glob_row
|
||||
icoeff = icoeff+1
|
||||
endif
|
||||
! term depending on (x,y+1,z)
|
||||
val(icoeff)=-a2(x,y,z)/sqdeltah+b2(x,y,z)/deltah2
|
||||
if (iy == idim) then
|
||||
zt(k) = g(x,done,z)*(-val(icoeff)) + zt(k)
|
||||
else
|
||||
call ijk2idx(icol(icoeff),ix,iy+1,iz,idim,idim,idim)
|
||||
irow(icoeff) = glob_row
|
||||
icoeff = icoeff+1
|
||||
endif
|
||||
! term depending on (x+1,y,z)
|
||||
val(icoeff)=-a1(x,y,z)/sqdeltah+b1(x,y,z)/deltah2
|
||||
if (ix==idim) then
|
||||
zt(k) = g(done,y,z)*(-val(icoeff)) + zt(k)
|
||||
else
|
||||
call ijk2idx(icol(icoeff),ix+1,iy,iz,idim,idim,idim)
|
||||
irow(icoeff) = glob_row
|
||||
icoeff = icoeff+1
|
||||
endif
|
||||
|
||||
end do
|
||||
call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
|
||||
if(info /= psb_success_) exit
|
||||
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
|
||||
if(info /= psb_success_) exit
|
||||
zt(:)=dzero
|
||||
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
|
||||
if(info /= psb_success_) exit
|
||||
end do
|
||||
|
||||
tgen = psb_wtime()-t1
|
||||
if(info /= psb_success_) then
|
||||
info=psb_err_from_subroutine_
|
||||
ch_err='insert rout.'
|
||||
call psb_errpush(info,name,a_err=ch_err)
|
||||
goto 9999
|
||||
end if
|
||||
|
||||
deallocate(val,irow,icol)
|
||||
|
||||
call psb_barrier(ctxt)
|
||||
t1 = psb_wtime()
|
||||
call psb_cdasb(desc_a,info)
|
||||
tcdasb = psb_wtime()-t1
|
||||
call psb_barrier(ctxt)
|
||||
t1 = psb_wtime()
|
||||
if (info == psb_success_) then
|
||||
if (present(amold)) then
|
||||
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,mold=amold)
|
||||
else
|
||||
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
|
||||
end if
|
||||
end if
|
||||
call psb_barrier(ctxt)
|
||||
if(info /= psb_success_) then
|
||||
info=psb_err_from_subroutine_
|
||||
ch_err='asb rout.'
|
||||
call psb_errpush(info,name,a_err=ch_err)
|
||||
goto 9999
|
||||
end if
|
||||
if (info == psb_success_) call psb_geasb(xv,desc_a,info,mold=vmold)
|
||||
if (info == psb_success_) call psb_geasb(bv,desc_a,info,mold=vmold)
|
||||
if(info /= psb_success_) then
|
||||
info=psb_err_from_subroutine_
|
||||
ch_err='asb rout.'
|
||||
call psb_errpush(info,name,a_err=ch_err)
|
||||
goto 9999
|
||||
end if
|
||||
tasb = psb_wtime()-t1
|
||||
call psb_barrier(ctxt)
|
||||
ttot = psb_wtime() - t0
|
||||
|
||||
call psb_amx(ctxt,talc)
|
||||
call psb_amx(ctxt,tgen)
|
||||
call psb_amx(ctxt,tasb)
|
||||
call psb_amx(ctxt,ttot)
|
||||
if(iam == psb_root_) then
|
||||
tmpfmt = a%get_fmt()
|
||||
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
|
||||
& tmpfmt
|
||||
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
|
||||
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
|
||||
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
|
||||
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
|
||||
write(psb_out_unit,'("-total time : ",es12.5)') ttot
|
||||
|
||||
end if
|
||||
call psb_erractionrestore(err_act)
|
||||
return
|
||||
|
||||
9999 continue
|
||||
call psb_erractionrestore(err_act)
|
||||
if (err_act == psb_act_abort_) then
|
||||
call psb_error(ctxt)
|
||||
return
|
||||
end if
|
||||
return
|
||||
end subroutine amg_d_gen_pde3d
|
||||
|
||||
|
||||
|
||||
!
|
||||
! subroutine to allocate and fill in the coefficient matrix and
|
||||
! the rhs.
|
||||
!
|
||||
subroutine amg_d_gen_pde2d(ctxt,idim,a,bv,xv,desc_a,afmt,&
|
||||
& a1,a2,b1,b2,c,g,info,f,amold,vmold,partition, nrl,iv)
|
||||
use psb_base_mod
|
||||
use psb_util_mod
|
||||
!
|
||||
! Discretizes the partial differential equation
|
||||
!
|
||||
! d d(u) d d(u) b1 d(u) b2 d(u)
|
||||
! - -- a1 ---- - -- a1 ---- + ----- + ------ + c u = f
|
||||
! dx dx dy dy dx dy
|
||||
!
|
||||
! with Dirichlet boundary conditions
|
||||
! u = g
|
||||
!
|
||||
! on the unit square 0<=x,y<=1.
|
||||
!
|
||||
!
|
||||
! Note that if b1=b2=c=0., the PDE is the Laplace equation.
|
||||
!
|
||||
implicit none
|
||||
procedure(d_func_2d) :: b1,b2,c,a1,a2,g
|
||||
integer(psb_ipk_) :: idim
|
||||
type(psb_dspmat_type) :: a
|
||||
type(psb_d_vect_type) :: xv,bv
|
||||
type(psb_desc_type) :: desc_a
|
||||
integer(psb_ipk_) :: info
|
||||
type(psb_ctxt_type) :: ctxt
|
||||
character :: afmt*5
|
||||
procedure(d_func_2d), optional :: f
|
||||
class(psb_d_base_sparse_mat), optional :: amold
|
||||
class(psb_d_base_vect_type), optional :: vmold
|
||||
integer(psb_ipk_), optional :: partition, nrl,iv(:)
|
||||
! Local variables.
|
||||
|
||||
integer(psb_ipk_), parameter :: nb=20
|
||||
type(psb_d_csc_sparse_mat) :: acsc
|
||||
type(psb_d_coo_sparse_mat) :: acoo
|
||||
type(psb_d_csr_sparse_mat) :: acsr
|
||||
real(psb_dpk_) :: zt(nb),x,y,z,xph,xmh,yph,ymh,zph,zmh
|
||||
integer(psb_ipk_) :: nnz,nr,nlr,i,j,ii,ib,k, partition_
|
||||
integer(psb_lpk_) :: m,n,glob_row,nt
|
||||
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
|
||||
! For 2D partition
|
||||
! Note: integer control variables going directly into an MPI call
|
||||
! must be 4 bytes, i.e. psb_mpk_
|
||||
integer(psb_mpk_) :: npdims(2), npp, minfo
|
||||
integer(psb_ipk_) :: npx,npy,iamx,iamy,mynx,myny
|
||||
integer(psb_ipk_), allocatable :: bndx(:),bndy(:)
|
||||
! Process grid
|
||||
integer(psb_ipk_) :: np, iam
|
||||
integer(psb_ipk_) :: icoeff
|
||||
integer(psb_lpk_), allocatable :: irow(:),icol(:),myidx(:)
|
||||
real(psb_dpk_), allocatable :: val(:)
|
||||
! deltah dimension of each grid cell
|
||||
! deltat discretization time
|
||||
real(psb_dpk_) :: deltah, sqdeltah, deltah2, dd
|
||||
real(psb_dpk_), parameter :: rhs=0.d0,one=done,zero=0.d0
|
||||
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
|
||||
integer(psb_ipk_) :: err_act
|
||||
procedure(d_func_2d), pointer :: f_
|
||||
character(len=20) :: name, ch_err,tmpfmt
|
||||
|
||||
info = psb_success_
|
||||
name = 'create_matrix'
|
||||
call psb_erractionsave(err_act)
|
||||
|
||||
call psb_info(ctxt, iam, np)
|
||||
|
||||
|
||||
if (present(f)) then
|
||||
f_ => f
|
||||
else
|
||||
f_ => d_null_func_2d
|
||||
end if
|
||||
|
||||
deltah = done/(idim+2)
|
||||
sqdeltah = deltah*deltah
|
||||
deltah2 = 2.0_psb_dpk_* deltah
|
||||
|
||||
|
||||
if (present(partition)) then
|
||||
if ((1<= partition).and.(partition <= 3)) then
|
||||
partition_ = partition
|
||||
else
|
||||
write(*,*) 'Invalid partition choice ',partition,' defaulting to 3'
|
||||
partition_ = 3
|
||||
end if
|
||||
else
|
||||
partition_ = 3
|
||||
end if
|
||||
|
||||
! initialize array descriptor and sparse matrix storage. provide an
|
||||
! estimate of the number of non zeroes
|
||||
|
||||
m = (1_psb_lpk_)*idim*idim
|
||||
n = m
|
||||
nnz = 7*((n+np-1)/np)
|
||||
if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
|
||||
t0 = psb_wtime()
|
||||
select case(partition_)
|
||||
case(1)
|
||||
! A BLOCK partition
|
||||
if (present(nrl)) then
|
||||
nr = nrl
|
||||
else
|
||||
!
|
||||
! Using a simple BLOCK distribution.
|
||||
!
|
||||
nt = (m+np-1)/np
|
||||
nr = max(0,min(nt,m-(iam*nt)))
|
||||
end if
|
||||
|
||||
nt = nr
|
||||
call psb_sum(ctxt,nt)
|
||||
if (nt /= m) then
|
||||
write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
|
||||
info = -1
|
||||
call psb_barrier(ctxt)
|
||||
call psb_abort(ctxt)
|
||||
return
|
||||
end if
|
||||
|
||||
!
|
||||
! First example of use of CDALL: specify for each process a number of
|
||||
! contiguous rows
|
||||
!
|
||||
call psb_cdall(ctxt,desc_a,info,nl=nr)
|
||||
myidx = desc_a%get_global_indices()
|
||||
nlr = size(myidx)
|
||||
|
||||
case(2)
|
||||
! A partition defined by the user through IV
|
||||
|
||||
if (present(iv)) then
|
||||
if (size(iv) /= m) then
|
||||
write(psb_err_unit,*) iam, 'Initialization error: wrong IV size',size(iv),m
|
||||
info = -1
|
||||
call psb_barrier(ctxt)
|
||||
call psb_abort(ctxt)
|
||||
return
|
||||
end if
|
||||
else
|
||||
write(psb_err_unit,*) iam, 'Initialization error: IV not present'
|
||||
info = -1
|
||||
call psb_barrier(ctxt)
|
||||
call psb_abort(ctxt)
|
||||
return
|
||||
end if
|
||||
|
||||
!
|
||||
! Second example of use of CDALL: specify for each row the
|
||||
! process that owns it
|
||||
!
|
||||
call psb_cdall(ctxt,desc_a,info,vg=iv)
|
||||
myidx = desc_a%get_global_indices()
|
||||
nlr = size(myidx)
|
||||
|
||||
case(3)
|
||||
! A 2-dimensional partition
|
||||
|
||||
! A nifty MPI function will split the process list
|
||||
npdims = 0
|
||||
call mpi_dims_create(np,2,npdims,info)
|
||||
npx = npdims(1)
|
||||
npy = npdims(2)
|
||||
|
||||
allocate(bndx(0:npx),bndy(0:npy))
|
||||
! We can reuse idx2ijk for process indices as well.
|
||||
call idx2ijk(iamx,iamy,iam,npx,npy,base=0)
|
||||
! Now let's split the 2D square in rectangles
|
||||
call dist1Didx(bndx,idim,npx)
|
||||
mynx = bndx(iamx+1)-bndx(iamx)
|
||||
call dist1Didx(bndy,idim,npy)
|
||||
myny = bndy(iamy+1)-bndy(iamy)
|
||||
|
||||
! How many indices do I own?
|
||||
nlr = mynx*myny
|
||||
allocate(myidx(nlr))
|
||||
! Now, let's generate the list of indices I own
|
||||
nr = 0
|
||||
do i=bndx(iamx),bndx(iamx+1)-1
|
||||
do j=bndy(iamy),bndy(iamy+1)-1
|
||||
nr = nr + 1
|
||||
call ijk2idx(myidx(nr),i,j,idim,idim)
|
||||
end do
|
||||
end do
|
||||
if (nr /= nlr) then
|
||||
write(psb_err_unit,*) iam,iamx,iamy, 'Initialization error: NR vs NLR ',&
|
||||
& nr,nlr,mynx,myny
|
||||
info = -1
|
||||
call psb_barrier(ctxt)
|
||||
call psb_abort(ctxt)
|
||||
end if
|
||||
|
||||
!
|
||||
! Third example of use of CDALL: specify for each process
|
||||
! the set of global indices it owns.
|
||||
!
|
||||
call psb_cdall(ctxt,desc_a,info,vl=myidx)
|
||||
|
||||
case default
|
||||
write(psb_err_unit,*) iam, 'Initialization error: should not get here'
|
||||
info = -1
|
||||
call psb_barrier(ctxt)
|
||||
call psb_abort(ctxt)
|
||||
return
|
||||
end select
|
||||
|
||||
|
||||
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
|
||||
! define rhs from boundary conditions; also build initial guess
|
||||
if (info == psb_success_) call psb_geall(xv,desc_a,info)
|
||||
if (info == psb_success_) call psb_geall(bv,desc_a,info)
|
||||
|
||||
call psb_barrier(ctxt)
|
||||
talc = psb_wtime()-t0
|
||||
|
||||
if (info /= psb_success_) then
|
||||
info=psb_err_from_subroutine_
|
||||
ch_err='allocation rout.'
|
||||
call psb_errpush(info,name,a_err=ch_err)
|
||||
goto 9999
|
||||
end if
|
||||
|
||||
! we build an auxiliary matrix consisting of one row at a
|
||||
! time; just a small matrix. might be extended to generate
|
||||
! a bunch of rows per call.
|
||||
!
|
||||
allocate(val(20*nb),irow(20*nb),&
|
||||
&icol(20*nb),stat=info)
|
||||
if (info /= psb_success_ ) then
|
||||
info=psb_err_alloc_dealloc_
|
||||
call psb_errpush(info,name)
|
||||
goto 9999
|
||||
endif
|
||||
|
||||
|
||||
! loop over rows belonging to current process in a block
|
||||
! distribution.
|
||||
|
||||
call psb_barrier(ctxt)
|
||||
t1 = psb_wtime()
|
||||
do ii=1, nlr,nb
|
||||
ib = min(nb,nlr-ii+1)
|
||||
icoeff = 1
|
||||
do k=1,ib
|
||||
i=ii+k-1
|
||||
! local matrix pointer
|
||||
glob_row=myidx(i)
|
||||
! compute gridpoint coordinates
|
||||
call idx2ijk(ix,iy,glob_row,idim,idim)
|
||||
! x, y coordinates
|
||||
x = (ix-1)*deltah
|
||||
y = (iy-1)*deltah
|
||||
|
||||
zt(k) = f_(x,y)
|
||||
! internal point: build discretization
|
||||
!
|
||||
! term depending on (x-1,y)
|
||||
!
|
||||
val(icoeff) = -a1(x,y)/sqdeltah-b1(x,y)/deltah2
|
||||
if (ix == 1) then
|
||||
zt(k) = g(dzero,y)*(-val(icoeff)) + zt(k)
|
||||
else
|
||||
call ijk2idx(icol(icoeff),ix-1,iy,idim,idim)
|
||||
irow(icoeff) = glob_row
|
||||
icoeff = icoeff+1
|
||||
endif
|
||||
! term depending on (x,y-1)
|
||||
val(icoeff) = -a2(x,y)/sqdeltah-b2(x,y)/deltah2
|
||||
if (iy == 1) then
|
||||
zt(k) = g(x,dzero)*(-val(icoeff)) + zt(k)
|
||||
else
|
||||
call ijk2idx(icol(icoeff),ix,iy-1,idim,idim)
|
||||
irow(icoeff) = glob_row
|
||||
icoeff = icoeff+1
|
||||
endif
|
||||
|
||||
! term depending on (x,y)
|
||||
val(icoeff)=(2*done)*(a1(x,y) + a2(x,y))/sqdeltah + c(x,y)
|
||||
call ijk2idx(icol(icoeff),ix,iy,idim,idim)
|
||||
irow(icoeff) = glob_row
|
||||
icoeff = icoeff+1
|
||||
! term depending on (x,y+1)
|
||||
val(icoeff)=-a2(x,y)/sqdeltah+b2(x,y)/deltah2
|
||||
if (iy == idim) then
|
||||
zt(k) = g(x,done)*(-val(icoeff)) + zt(k)
|
||||
else
|
||||
call ijk2idx(icol(icoeff),ix,iy+1,idim,idim)
|
||||
irow(icoeff) = glob_row
|
||||
icoeff = icoeff+1
|
||||
endif
|
||||
! term depending on (x+1,y)
|
||||
val(icoeff)=-a1(x,y)/sqdeltah+b1(x,y)/deltah2
|
||||
if (ix==idim) then
|
||||
zt(k) = g(done,y)*(-val(icoeff)) + zt(k)
|
||||
else
|
||||
call ijk2idx(icol(icoeff),ix+1,iy,idim,idim)
|
||||
irow(icoeff) = glob_row
|
||||
icoeff = icoeff+1
|
||||
endif
|
||||
|
||||
end do
|
||||
call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
|
||||
if(info /= psb_success_) exit
|
||||
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
|
||||
if(info /= psb_success_) exit
|
||||
zt(:)=dzero
|
||||
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
|
||||
if(info /= psb_success_) exit
|
||||
end do
|
||||
|
||||
tgen = psb_wtime()-t1
|
||||
if(info /= psb_success_) then
|
||||
info=psb_err_from_subroutine_
|
||||
ch_err='insert rout.'
|
||||
call psb_errpush(info,name,a_err=ch_err)
|
||||
goto 9999
|
||||
end if
|
||||
|
||||
deallocate(val,irow,icol)
|
||||
|
||||
call psb_barrier(ctxt)
|
||||
t1 = psb_wtime()
|
||||
call psb_cdasb(desc_a,info)
|
||||
tcdasb = psb_wtime()-t1
|
||||
call psb_barrier(ctxt)
|
||||
t1 = psb_wtime()
|
||||
if (info == psb_success_) then
|
||||
if (present(amold)) then
|
||||
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,mold=amold)
|
||||
else
|
||||
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
|
||||
end if
|
||||
end if
|
||||
call psb_barrier(ctxt)
|
||||
if(info /= psb_success_) then
|
||||
info=psb_err_from_subroutine_
|
||||
ch_err='asb rout.'
|
||||
call psb_errpush(info,name,a_err=ch_err)
|
||||
goto 9999
|
||||
end if
|
||||
if (info == psb_success_) call psb_geasb(xv,desc_a,info,mold=vmold)
|
||||
if (info == psb_success_) call psb_geasb(bv,desc_a,info,mold=vmold)
|
||||
if(info /= psb_success_) then
|
||||
info=psb_err_from_subroutine_
|
||||
ch_err='asb rout.'
|
||||
call psb_errpush(info,name,a_err=ch_err)
|
||||
goto 9999
|
||||
end if
|
||||
tasb = psb_wtime()-t1
|
||||
call psb_barrier(ctxt)
|
||||
ttot = psb_wtime() - t0
|
||||
|
||||
call psb_amx(ctxt,talc)
|
||||
call psb_amx(ctxt,tgen)
|
||||
call psb_amx(ctxt,tasb)
|
||||
call psb_amx(ctxt,ttot)
|
||||
if(iam == psb_root_) then
|
||||
tmpfmt = a%get_fmt()
|
||||
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
|
||||
& tmpfmt
|
||||
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
|
||||
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
|
||||
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
|
||||
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
|
||||
write(psb_out_unit,'("-total time : ",es12.5)') ttot
|
||||
|
||||
end if
|
||||
call psb_erractionrestore(err_act)
|
||||
return
|
||||
|
||||
9999 continue
|
||||
call psb_erractionrestore(err_act)
|
||||
if (err_act == psb_act_abort_) then
|
||||
call psb_error(ctxt)
|
||||
return
|
||||
end if
|
||||
return
|
||||
end subroutine amg_d_gen_pde2d
|
||||
end module amg_d_genpde_mod
|
@ -0,0 +1,53 @@
|
||||
module amg_d_pde2d_base_mod
|
||||
use psb_base_mod, only : psb_dpk_, dzero, done
|
||||
real(psb_dpk_), save, private :: epsilon=done/80
|
||||
contains
|
||||
subroutine pde_set_parm(dat)
|
||||
real(psb_dpk_), intent(in) :: dat
|
||||
epsilon = dat
|
||||
end subroutine pde_set_parm
|
||||
!
|
||||
! functions parametrizing the differential equation
|
||||
!
|
||||
function b1(x,y)
|
||||
use psb_base_mod, only : psb_dpk_, dzero, done
|
||||
real(psb_dpk_) :: b1
|
||||
real(psb_dpk_), intent(in) :: x,y
|
||||
b1 = dzero/1.414_psb_dpk_
|
||||
end function b1
|
||||
function b2(x,y)
|
||||
use psb_base_mod, only : psb_dpk_, dzero, done
|
||||
real(psb_dpk_) :: b2
|
||||
real(psb_dpk_), intent(in) :: x,y
|
||||
b2 = dzero/1.414_psb_dpk_
|
||||
end function b2
|
||||
function c(x,y)
|
||||
use psb_base_mod, only : psb_dpk_, dzero, done
|
||||
real(psb_dpk_) :: c
|
||||
real(psb_dpk_), intent(in) :: x,y
|
||||
c = dzero
|
||||
end function c
|
||||
function a1(x,y)
|
||||
use psb_base_mod, only : psb_dpk_, dzero, done
|
||||
real(psb_dpk_) :: a1
|
||||
real(psb_dpk_), intent(in) :: x,y
|
||||
a1=done*epsilon
|
||||
end function a1
|
||||
function a2(x,y)
|
||||
use psb_base_mod, only : psb_dpk_, dzero, done
|
||||
real(psb_dpk_) :: a2
|
||||
real(psb_dpk_), intent(in) :: x,y
|
||||
a2=done*epsilon
|
||||
end function a2
|
||||
function g(x,y)
|
||||
use psb_base_mod, only : psb_dpk_, dzero, done
|
||||
real(psb_dpk_) :: g
|
||||
real(psb_dpk_), intent(in) :: x,y
|
||||
g = dzero
|
||||
if (x == done) then
|
||||
g = done
|
||||
else if (x == dzero) then
|
||||
g = done
|
||||
end if
|
||||
end function g
|
||||
end module amg_d_pde2d_base_mod
|
@ -0,0 +1,53 @@
|
||||
module amg_d_pde2d_box_mod
|
||||
use psb_base_mod, only : psb_dpk_, dzero, done
|
||||
real(psb_dpk_), save, private :: epsilon=done/80
|
||||
contains
|
||||
subroutine pde_set_parm(dat)
|
||||
real(psb_dpk_), intent(in) :: dat
|
||||
epsilon = dat
|
||||
end subroutine pde_set_parm
|
||||
!
|
||||
! functions parametrizing the differential equation
|
||||
!
|
||||
function b1_box(x,y)
|
||||
use psb_base_mod, only : psb_dpk_, dzero, done
|
||||
real(psb_dpk_) :: b1_box
|
||||
real(psb_dpk_), intent(in) :: x,y
|
||||
b1_box = done/1.414_psb_dpk_
|
||||
end function b1_box
|
||||
function b2_box(x,y)
|
||||
use psb_base_mod, only : psb_dpk_, dzero, done
|
||||
real(psb_dpk_) :: b2_box
|
||||
real(psb_dpk_), intent(in) :: x,y
|
||||
b2_box = done/1.414_psb_dpk_
|
||||
end function b2_box
|
||||
function c_box(x,y)
|
||||
use psb_base_mod, only : psb_dpk_, dzero, done
|
||||
real(psb_dpk_) :: c_box
|
||||
real(psb_dpk_), intent(in) :: x,y
|
||||
c_box = dzero
|
||||
end function c_box
|
||||
function a1_box(x,y)
|
||||
use psb_base_mod, only : psb_dpk_, dzero, done
|
||||
real(psb_dpk_) :: a1_box
|
||||
real(psb_dpk_), intent(in) :: x,y
|
||||
a1_box=done*epsilon
|
||||
end function a1_box
|
||||
function a2_box(x,y)
|
||||
use psb_base_mod, only : psb_dpk_, dzero, done
|
||||
real(psb_dpk_) :: a2_box
|
||||
real(psb_dpk_), intent(in) :: x,y
|
||||
a2_box=done*epsilon
|
||||
end function a2_box
|
||||
function g_box(x,y)
|
||||
use psb_base_mod, only : psb_dpk_, dzero, done
|
||||
real(psb_dpk_) :: g_box
|
||||
real(psb_dpk_), intent(in) :: x,y
|
||||
g_box = dzero
|
||||
if (x == done) then
|
||||
g_box = done
|
||||
else if (x == dzero) then
|
||||
g_box = done
|
||||
end if
|
||||
end function g_box
|
||||
end module amg_d_pde2d_box_mod
|
@ -0,0 +1,53 @@
|
||||
module amg_d_pde2d_exp_mod
|
||||
use psb_base_mod, only : psb_dpk_, done, dzero
|
||||
real(psb_dpk_), save, private :: epsilon=done/80
|
||||
contains
|
||||
subroutine pde_set_parm(dat)
|
||||
real(psb_dpk_), intent(in) :: dat
|
||||
epsilon = dat
|
||||
end subroutine pde_set_parm
|
||||
!
|
||||
! functions parametrizing the differential equation
|
||||
!
|
||||
function b1_exp(x,y)
|
||||
use psb_base_mod, only : psb_dpk_, done, dzero
|
||||
real(psb_dpk_) :: b1_exp
|
||||
real(psb_dpk_), intent(in) :: x,y
|
||||
b1_exp = dzero
|
||||
end function b1_exp
|
||||
function b2_exp(x,y)
|
||||
use psb_base_mod, only : psb_dpk_, done, dzero
|
||||
real(psb_dpk_) :: b2_exp
|
||||
real(psb_dpk_), intent(in) :: x,y
|
||||
b2_exp = dzero
|
||||
end function b2_exp
|
||||
function c_exp(x,y)
|
||||
use psb_base_mod, only : psb_dpk_, done, dzero
|
||||
real(psb_dpk_) :: c_exp
|
||||
real(psb_dpk_), intent(in) :: x,y
|
||||
c_exp = dzero
|
||||
end function c_exp
|
||||
function a1_exp(x,y)
|
||||
use psb_base_mod, only : psb_dpk_, done, dzero
|
||||
real(psb_dpk_) :: a1_exp
|
||||
real(psb_dpk_), intent(in) :: x,y
|
||||
a1=done*epsilon*exp(-(x+y))
|
||||
end function a1_exp
|
||||
function a2_exp(x,y)
|
||||
use psb_base_mod, only : psb_dpk_, done, dzero
|
||||
real(psb_dpk_) :: a2_exp
|
||||
real(psb_dpk_), intent(in) :: x,y
|
||||
a2=done*epsilon*exp(-(x+y))
|
||||
end function a2_exp
|
||||
function g_exp(x,y)
|
||||
use psb_base_mod, only : psb_dpk_, done, dzero
|
||||
real(psb_dpk_) :: g_exp
|
||||
real(psb_dpk_), intent(in) :: x,y
|
||||
g_exp = dzero
|
||||
if (x == done) then
|
||||
g_exp = done
|
||||
else if (x == dzero) then
|
||||
g_exp = done
|
||||
end if
|
||||
end function g_exp
|
||||
end module amg_d_pde2d_exp_mod
|
@ -0,0 +1,65 @@
|
||||
module amg_d_pde3d_base_mod
|
||||
use psb_base_mod, only : psb_dpk_, done
|
||||
real(psb_dpk_), save, private :: epsilon=done/80
|
||||
contains
|
||||
subroutine pde_set_parm(dat)
|
||||
real(psb_dpk_), intent(in) :: dat
|
||||
epsilon = dat
|
||||
end subroutine pde_set_parm
|
||||
!
|
||||
! functions parametrizing the differential equation
|
||||
!
|
||||
function b1(x,y,z)
|
||||
use psb_base_mod, only : psb_dpk_, done
|
||||
real(psb_dpk_) :: b1
|
||||
real(psb_dpk_), intent(in) :: x,y,z
|
||||
b1=done/sqrt(3.0_psb_dpk_)
|
||||
end function b1
|
||||
function b2(x,y,z)
|
||||
use psb_base_mod, only : psb_dpk_, done
|
||||
real(psb_dpk_) :: b2
|
||||
real(psb_dpk_), intent(in) :: x,y,z
|
||||
b2=done/sqrt(3.0_psb_dpk_)
|
||||
end function b2
|
||||
function b3(x,y,z)
|
||||
use psb_base_mod, only : psb_dpk_, done
|
||||
real(psb_dpk_) :: b3
|
||||
real(psb_dpk_), intent(in) :: x,y,z
|
||||
b3=done/sqrt(3.0_psb_dpk_)
|
||||
end function b3
|
||||
function c(x,y,z)
|
||||
use psb_base_mod, only : psb_dpk_, done
|
||||
real(psb_dpk_) :: c
|
||||
real(psb_dpk_), intent(in) :: x,y,z
|
||||
c=dzero
|
||||
end function c
|
||||
function a1(x,y,z)
|
||||
use psb_base_mod, only : psb_dpk_
|
||||
real(psb_dpk_) :: a1
|
||||
real(psb_dpk_), intent(in) :: x,y,z
|
||||
a1=epsilon
|
||||
end function a1
|
||||
function a2(x,y,z)
|
||||
use psb_base_mod, only : psb_dpk_
|
||||
real(psb_dpk_) :: a2
|
||||
real(psb_dpk_), intent(in) :: x,y,z
|
||||
a2=epsilon
|
||||
end function a2
|
||||
function a3(x,y,z)
|
||||
use psb_base_mod, only : psb_dpk_
|
||||
real(psb_dpk_) :: a3
|
||||
real(psb_dpk_), intent(in) :: x,y,z
|
||||
a3=epsilon
|
||||
end function a3
|
||||
function g(x,y,z)
|
||||
use psb_base_mod, only : psb_dpk_, done, dzero
|
||||
real(psb_dpk_) :: g
|
||||
real(psb_dpk_), intent(in) :: x,y,z
|
||||
g = dzero
|
||||
if (x == done) then
|
||||
g = done
|
||||
else if (x == dzero) then
|
||||
g = done
|
||||
end if
|
||||
end function g
|
||||
end module amg_d_pde3d_base_mod
|
@ -0,0 +1,65 @@
|
||||
module amg_d_pde3d_exp_mod
|
||||
use psb_base_mod, only : psb_dpk_, done
|
||||
real(psb_dpk_), save, private :: epsilon=done/160
|
||||
contains
|
||||
subroutine pde_set_parm(dat)
|
||||
real(psb_dpk_), intent(in) :: dat
|
||||
epsilon = dat
|
||||
end subroutine pde_set_parm
|
||||
!
|
||||
! functions parametrizing the differential equation
|
||||
!
|
||||
function b1_exp(x,y,z)
|
||||
use psb_base_mod, only : psb_dpk_, dzero
|
||||
real(psb_dpk_) :: b1_exp
|
||||
real(psb_dpk_), intent(in) :: x,y,z
|
||||
b1_exp=dzero/sqrt(3.0_psb_dpk_)
|
||||
end function b1_exp
|
||||
function b2_exp(x,y,z)
|
||||
use psb_base_mod, only : psb_dpk_, dzero
|
||||
real(psb_dpk_) :: b2_exp
|
||||
real(psb_dpk_), intent(in) :: x,y,z
|
||||
b2_exp=dzero/sqrt(3.0_psb_dpk_)
|
||||
end function b2_exp
|
||||
function b3_exp(x,y,z)
|
||||
use psb_base_mod, only : psb_dpk_, dzero
|
||||
real(psb_dpk_) :: b3_exp
|
||||
real(psb_dpk_), intent(in) :: x,y,z
|
||||
b3_exp=dzero/sqrt(3.0_psb_dpk_)
|
||||
end function b3_exp
|
||||
function c_exp(x,y,z)
|
||||
use psb_base_mod, only : psb_dpk_, dzero
|
||||
real(psb_dpk_) :: c_exp
|
||||
real(psb_dpk_), intent(in) :: x,y,z
|
||||
c_exp=dzero
|
||||
end function c_exp
|
||||
function a1_exp(x,y,z)
|
||||
use psb_base_mod, only : psb_dpk_
|
||||
real(psb_dpk_) :: a1_exp
|
||||
real(psb_dpk_), intent(in) :: x,y,z
|
||||
a1_exp=epsilon*exp(-(x+y+z))
|
||||
end function a1_exp
|
||||
function a2_exp(x,y,z)
|
||||
use psb_base_mod, only : psb_dpk_
|
||||
real(psb_dpk_) :: a2_exp
|
||||
real(psb_dpk_), intent(in) :: x,y,z
|
||||
a2_exp=epsilon*exp(-(x+y+z))
|
||||
end function a2_exp
|
||||
function a3_exp(x,y,z)
|
||||
use psb_base_mod, only : psb_dpk_
|
||||
real(psb_dpk_) :: a3_exp
|
||||
real(psb_dpk_), intent(in) :: x,y,z
|
||||
a3_exp=epsilon*exp(-(x+y+z))
|
||||
end function a3_exp
|
||||
function g_exp(x,y,z)
|
||||
use psb_base_mod, only : psb_dpk_, done, dzero
|
||||
real(psb_dpk_) :: g_exp
|
||||
real(psb_dpk_), intent(in) :: x,y,z
|
||||
g_exp = dzero
|
||||
if (x == done) then
|
||||
g_exp = done
|
||||
else if (x == dzero) then
|
||||
g_exp = done
|
||||
end if
|
||||
end function g_exp
|
||||
end module amg_d_pde3d_exp_mod
|
@ -0,0 +1,65 @@
|
||||
module amg_d_pde3d_gauss_mod
|
||||
use psb_base_mod, only : psb_dpk_, done
|
||||
real(psb_dpk_), save, private :: epsilon=done/80
|
||||
contains
|
||||
subroutine pde_set_parm(dat)
|
||||
real(psb_dpk_), intent(in) :: dat
|
||||
epsilon = dat
|
||||
end subroutine pde_set_parm
|
||||
!
|
||||
! functions parametrizing the differential equation
|
||||
!
|
||||
function b1_gauss(x,y,z)
|
||||
use psb_base_mod, only : psb_dpk_, done
|
||||
real(psb_dpk_) :: b1_gauss
|
||||
real(psb_dpk_), intent(in) :: x,y,z
|
||||
b1_gauss=done/sqrt(3.0_psb_dpk_)-2*x*exp(-(x**2+y**2+z**2))
|
||||
end function b1_gauss
|
||||
function b2_gauss(x,y,z)
|
||||
use psb_base_mod, only : psb_dpk_, done
|
||||
real(psb_dpk_) :: b2_gauss
|
||||
real(psb_dpk_), intent(in) :: x,y,z
|
||||
b2_gauss=done/sqrt(3.0_psb_dpk_)-2*y*exp(-(x**2+y**2+z**2))
|
||||
end function b2_gauss
|
||||
function b3_gauss(x,y,z)
|
||||
use psb_base_mod, only : psb_dpk_, done
|
||||
real(psb_dpk_) :: b3_gauss
|
||||
real(psb_dpk_), intent(in) :: x,y,z
|
||||
b3_gauss=done/sqrt(3.0_psb_dpk_)-2*z*exp(-(x**2+y**2+z**2))
|
||||
end function b3_gauss
|
||||
function c_gauss(x,y,z)
|
||||
use psb_base_mod, only : psb_dpk_, dzero
|
||||
real(psb_dpk_) :: c_gauss
|
||||
real(psb_dpk_), intent(in) :: x,y,z
|
||||
c=dzero
|
||||
end function c_gauss
|
||||
function a1_gauss(x,y,z)
|
||||
use psb_base_mod, only : psb_dpk_
|
||||
real(psb_dpk_) :: a1_gauss
|
||||
real(psb_dpk_), intent(in) :: x,y,z
|
||||
a1_gauss=epsilon*exp(-(x**2+y**2+z**2))
|
||||
end function a1_gauss
|
||||
function a2_gauss(x,y,z)
|
||||
use psb_base_mod, only : psb_dpk_
|
||||
real(psb_dpk_) :: a2_gauss
|
||||
real(psb_dpk_), intent(in) :: x,y,z
|
||||
a2_gauss=epsilon*exp(-(x**2+y**2+z**2))
|
||||
end function a2_gauss
|
||||
function a3_gauss(x,y,z)
|
||||
use psb_base_mod, only : psb_dpk_
|
||||
real(psb_dpk_) :: a3_gauss
|
||||
real(psb_dpk_), intent(in) :: x,y,z
|
||||
a3_gauss=epsilon*exp(-(x**2+y**2+z**2))
|
||||
end function a3_gauss
|
||||
function g_gauss(x,y,z)
|
||||
use psb_base_mod, only : psb_dpk_, done, dzero
|
||||
real(psb_dpk_) :: g_gauss
|
||||
real(psb_dpk_), intent(in) :: x,y,z
|
||||
g_gauss = dzero
|
||||
if (x == done) then
|
||||
g_gauss = done
|
||||
else if (x == dzero) then
|
||||
g_gauss = done
|
||||
end if
|
||||
end function g_gauss
|
||||
end module amg_d_pde3d_gauss_mod
|
@ -0,0 +1,857 @@
|
||||
module amg_s_genpde_mod
|
||||
|
||||
|
||||
use psb_base_mod, only : psb_spk_, psb_ipk_, psb_desc_type,&
|
||||
& psb_sspmat_type, psb_s_vect_type, szero,&
|
||||
& psb_s_base_sparse_mat, psb_s_base_vect_type, psb_i_base_vect_type
|
||||
|
||||
interface
|
||||
function s_func_3d(x,y,z) result(val)
|
||||
import :: psb_spk_
|
||||
real(psb_spk_), intent(in) :: x,y,z
|
||||
real(psb_spk_) :: val
|
||||
end function s_func_3d
|
||||
end interface
|
||||
|
||||
interface amg_gen_pde3d
|
||||
module procedure amg_s_gen_pde3d
|
||||
end interface amg_gen_pde3d
|
||||
|
||||
interface
|
||||
function s_func_2d(x,y) result(val)
|
||||
import :: psb_spk_
|
||||
real(psb_spk_), intent(in) :: x,y
|
||||
real(psb_spk_) :: val
|
||||
end function s_func_2d
|
||||
end interface
|
||||
|
||||
interface amg_gen_pde2d
|
||||
module procedure amg_s_gen_pde2d
|
||||
end interface amg_gen_pde2d
|
||||
|
||||
contains
|
||||
|
||||
function s_null_func_2d(x,y) result(val)
|
||||
|
||||
real(psb_spk_), intent(in) :: x,y
|
||||
real(psb_spk_) :: val
|
||||
|
||||
val = szero
|
||||
|
||||
end function s_null_func_2d
|
||||
|
||||
function s_null_func_3d(x,y,z) result(val)
|
||||
|
||||
real(psb_spk_), intent(in) :: x,y,z
|
||||
real(psb_spk_) :: val
|
||||
|
||||
val = szero
|
||||
|
||||
end function s_null_func_3d
|
||||
|
||||
!
|
||||
! subroutine to allocate and fill in the coefficient matrix and
|
||||
! the rhs.
|
||||
!
|
||||
subroutine amg_s_gen_pde3d(ctxt,idim,a,bv,xv,desc_a,afmt,&
|
||||
& a1,a2,a3,b1,b2,b3,c,g,info,f,amold,vmold,partition, nrl,iv)
|
||||
use psb_base_mod
|
||||
use psb_util_mod
|
||||
!
|
||||
! Discretizes the partial differential equation
|
||||
!
|
||||
! d a1 d(u) d a1 d(u) d a1 d(u) b1 d(u) b2 d(u) b3 d(u)
|
||||
! - ------ - ------ - ------ + ----- + ------ + ------ + c u = f
|
||||
! dx dx dy dy dz dz dx dy dz
|
||||
!
|
||||
! with Dirichlet boundary conditions
|
||||
! u = g
|
||||
!
|
||||
! on the unit cube 0<=x,y,z<=1.
|
||||
!
|
||||
!
|
||||
! Note that if b1=b2=b3=c=0., the PDE is the Laplace equation.
|
||||
!
|
||||
implicit none
|
||||
procedure(s_func_3d) :: b1,b2,b3,c,a1,a2,a3,g
|
||||
integer(psb_ipk_) :: idim
|
||||
type(psb_sspmat_type) :: a
|
||||
type(psb_s_vect_type) :: xv,bv
|
||||
type(psb_desc_type) :: desc_a
|
||||
integer(psb_ipk_) :: info
|
||||
type(psb_ctxt_type) :: ctxt
|
||||
character :: afmt*5
|
||||
procedure(s_func_3d), optional :: f
|
||||
class(psb_s_base_sparse_mat), optional :: amold
|
||||
class(psb_s_base_vect_type), optional :: vmold
|
||||
integer(psb_ipk_), optional :: partition, nrl,iv(:)
|
||||
|
||||
! Local variables.
|
||||
|
||||
integer(psb_ipk_), parameter :: nb=20
|
||||
type(psb_s_csc_sparse_mat) :: acsc
|
||||
type(psb_s_coo_sparse_mat) :: acoo
|
||||
type(psb_s_csr_sparse_mat) :: acsr
|
||||
real(psb_spk_) :: zt(nb),x,y,z,xph,xmh,yph,ymh,zph,zmh
|
||||
integer(psb_ipk_) :: nnz,nr,nlr,i,j,ii,ib,k, partition_
|
||||
integer(psb_lpk_) :: m,n,glob_row,nt
|
||||
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
|
||||
! For 3D partition
|
||||
! Note: integer control variables going directly into an MPI call
|
||||
! must be 4 bytes, i.e. psb_mpk_
|
||||
integer(psb_mpk_) :: npdims(3), npp, minfo
|
||||
integer(psb_ipk_) :: npx,npy,npz, iamx,iamy,iamz,mynx,myny,mynz
|
||||
integer(psb_ipk_), allocatable :: bndx(:),bndy(:),bndz(:)
|
||||
! Process grid
|
||||
integer(psb_ipk_) :: np, iam
|
||||
integer(psb_ipk_) :: icoeff
|
||||
integer(psb_lpk_), allocatable :: irow(:),icol(:),myidx(:)
|
||||
real(psb_spk_), allocatable :: val(:)
|
||||
! deltah dimension of each grid cell
|
||||
! deltat discretization time
|
||||
real(psb_spk_) :: deltah, sqdeltah, deltah2
|
||||
real(psb_spk_), parameter :: rhs=szero,one=sone,zero=szero
|
||||
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
|
||||
integer(psb_ipk_) :: err_act
|
||||
procedure(s_func_3d), pointer :: f_
|
||||
character(len=20) :: name, ch_err,tmpfmt
|
||||
|
||||
info = psb_success_
|
||||
name = 's_create_matrix'
|
||||
call psb_erractionsave(err_act)
|
||||
|
||||
call psb_info(ctxt, iam, np)
|
||||
|
||||
|
||||
if (present(f)) then
|
||||
f_ => f
|
||||
else
|
||||
f_ => s_null_func_3d
|
||||
end if
|
||||
|
||||
if (present(partition)) then
|
||||
if ((1<= partition).and.(partition <= 3)) then
|
||||
partition_ = partition
|
||||
else
|
||||
write(*,*) 'Invalid partition choice ',partition,' defaulting to 3'
|
||||
partition_ = 3
|
||||
end if
|
||||
else
|
||||
partition_ = 3
|
||||
end if
|
||||
deltah = sone/(idim+2)
|
||||
sqdeltah = deltah*deltah
|
||||
deltah2 = 2.0_psb_spk_* deltah
|
||||
|
||||
if (present(partition)) then
|
||||
if ((1<= partition).and.(partition <= 3)) then
|
||||
partition_ = partition
|
||||
else
|
||||
write(*,*) 'Invalid partition choice ',partition,' defaulting to 3'
|
||||
partition_ = 3
|
||||
end if
|
||||
else
|
||||
partition_ = 3
|
||||
end if
|
||||
|
||||
! initialize array descriptor and sparse matrix storage. provide an
|
||||
! estimate of the number of non zeroes
|
||||
|
||||
m = (1_psb_lpk_*idim)*idim*idim
|
||||
n = m
|
||||
nnz = 7*((n+np-1)/np)
|
||||
if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
|
||||
t0 = psb_wtime()
|
||||
select case(partition_)
|
||||
case(1)
|
||||
! A BLOCK partition
|
||||
if (present(nrl)) then
|
||||
nr = nrl
|
||||
else
|
||||
!
|
||||
! Using a simple BLOCK distribution.
|
||||
!
|
||||
nt = (m+np-1)/np
|
||||
nr = max(0,min(nt,m-(iam*nt)))
|
||||
end if
|
||||
|
||||
nt = nr
|
||||
call psb_sum(ctxt,nt)
|
||||
if (nt /= m) then
|
||||
write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
|
||||
info = -1
|
||||
call psb_barrier(ctxt)
|
||||
call psb_abort(ctxt)
|
||||
return
|
||||
end if
|
||||
|
||||
!
|
||||
! First example of use of CDALL: specify for each process a number of
|
||||
! contiguous rows
|
||||
!
|
||||
call psb_cdall(ctxt,desc_a,info,nl=nr)
|
||||
myidx = desc_a%get_global_indices()
|
||||
nlr = size(myidx)
|
||||
|
||||
case(2)
|
||||
! A partition defined by the user through IV
|
||||
|
||||
if (present(iv)) then
|
||||
if (size(iv) /= m) then
|
||||
write(psb_err_unit,*) iam, 'Initialization error: wrong IV size',size(iv),m
|
||||
info = -1
|
||||
call psb_barrier(ctxt)
|
||||
call psb_abort(ctxt)
|
||||
return
|
||||
end if
|
||||
else
|
||||
write(psb_err_unit,*) iam, 'Initialization error: IV not present'
|
||||
info = -1
|
||||
call psb_barrier(ctxt)
|
||||
call psb_abort(ctxt)
|
||||
return
|
||||
end if
|
||||
|
||||
!
|
||||
! Second example of use of CDALL: specify for each row the
|
||||
! process that owns it
|
||||
!
|
||||
call psb_cdall(ctxt,desc_a,info,vg=iv)
|
||||
myidx = desc_a%get_global_indices()
|
||||
nlr = size(myidx)
|
||||
|
||||
case(3)
|
||||
! A 3-dimensional partition
|
||||
|
||||
! A nifty MPI function will split the process list
|
||||
npdims = 0
|
||||
call mpi_dims_create(np,3,npdims,info)
|
||||
npx = npdims(1)
|
||||
npy = npdims(2)
|
||||
npz = npdims(3)
|
||||
|
||||
allocate(bndx(0:npx),bndy(0:npy),bndz(0:npz))
|
||||
! We can reuse idx2ijk for process indices as well.
|
||||
call idx2ijk(iamx,iamy,iamz,iam,npx,npy,npz,base=0)
|
||||
! Now let's split the 3D cube in hexahedra
|
||||
call dist1Didx(bndx,idim,npx)
|
||||
mynx = bndx(iamx+1)-bndx(iamx)
|
||||
call dist1Didx(bndy,idim,npy)
|
||||
myny = bndy(iamy+1)-bndy(iamy)
|
||||
call dist1Didx(bndz,idim,npz)
|
||||
mynz = bndz(iamz+1)-bndz(iamz)
|
||||
|
||||
! How many indices do I own?
|
||||
nlr = mynx*myny*mynz
|
||||
allocate(myidx(nlr))
|
||||
! Now, let's generate the list of indices I own
|
||||
nr = 0
|
||||
do i=bndx(iamx),bndx(iamx+1)-1
|
||||
do j=bndy(iamy),bndy(iamy+1)-1
|
||||
do k=bndz(iamz),bndz(iamz+1)-1
|
||||
nr = nr + 1
|
||||
call ijk2idx(myidx(nr),i,j,k,idim,idim,idim)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
if (nr /= nlr) then
|
||||
write(psb_err_unit,*) iam,iamx,iamy,iamz, 'Initialization error: NR vs NLR ',&
|
||||
& nr,nlr,mynx,myny,mynz
|
||||
info = -1
|
||||
call psb_barrier(ctxt)
|
||||
call psb_abort(ctxt)
|
||||
end if
|
||||
|
||||
!
|
||||
! Third example of use of CDALL: specify for each process
|
||||
! the set of global indices it owns.
|
||||
!
|
||||
call psb_cdall(ctxt,desc_a,info,vl=myidx)
|
||||
|
||||
case default
|
||||
write(psb_err_unit,*) iam, 'Initialization error: should not get here'
|
||||
info = -1
|
||||
call psb_barrier(ctxt)
|
||||
call psb_abort(ctxt)
|
||||
return
|
||||
end select
|
||||
|
||||
|
||||
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
|
||||
! define rhs from boundary conditions; also build initial guess
|
||||
if (info == psb_success_) call psb_geall(xv,desc_a,info)
|
||||
if (info == psb_success_) call psb_geall(bv,desc_a,info)
|
||||
|
||||
call psb_barrier(ctxt)
|
||||
talc = psb_wtime()-t0
|
||||
|
||||
if (info /= psb_success_) then
|
||||
info=psb_err_from_subroutine_
|
||||
ch_err='allocation rout.'
|
||||
call psb_errpush(info,name,a_err=ch_err)
|
||||
goto 9999
|
||||
end if
|
||||
|
||||
! we build an auxiliary matrix consisting of one row at a
|
||||
! time; just a small matrix. might be extended to generate
|
||||
! a bunch of rows per call.
|
||||
!
|
||||
allocate(val(20*nb),irow(20*nb),&
|
||||
&icol(20*nb),stat=info)
|
||||
if (info /= psb_success_ ) then
|
||||
info=psb_err_alloc_dealloc_
|
||||
call psb_errpush(info,name)
|
||||
goto 9999
|
||||
endif
|
||||
|
||||
|
||||
! loop over rows belonging to current process in a block
|
||||
! distribution.
|
||||
|
||||
call psb_barrier(ctxt)
|
||||
t1 = psb_wtime()
|
||||
do ii=1, nlr,nb
|
||||
ib = min(nb,nlr-ii+1)
|
||||
icoeff = 1
|
||||
do k=1,ib
|
||||
i=ii+k-1
|
||||
! local matrix pointer
|
||||
glob_row=myidx(i)
|
||||
! compute gridpoint coordinates
|
||||
call idx2ijk(ix,iy,iz,glob_row,idim,idim,idim)
|
||||
! x, y, z coordinates
|
||||
x = (ix-1)*deltah
|
||||
y = (iy-1)*deltah
|
||||
z = (iz-1)*deltah
|
||||
zt(k) = f_(x,y,z)
|
||||
! internal point: build discretization
|
||||
!
|
||||
! term depending on (x-1,y,z)
|
||||
!
|
||||
val(icoeff) = -a1(x,y,z)/sqdeltah-b1(x,y,z)/deltah2
|
||||
if (ix == 1) then
|
||||
zt(k) = g(szero,y,z)*(-val(icoeff)) + zt(k)
|
||||
else
|
||||
call ijk2idx(icol(icoeff),ix-1,iy,iz,idim,idim,idim)
|
||||
irow(icoeff) = glob_row
|
||||
icoeff = icoeff+1
|
||||
endif
|
||||
! term depending on (x,y-1,z)
|
||||
val(icoeff) = -a2(x,y,z)/sqdeltah-b2(x,y,z)/deltah2
|
||||
if (iy == 1) then
|
||||
zt(k) = g(x,szero,z)*(-val(icoeff)) + zt(k)
|
||||
else
|
||||
call ijk2idx(icol(icoeff),ix,iy-1,iz,idim,idim,idim)
|
||||
irow(icoeff) = glob_row
|
||||
icoeff = icoeff+1
|
||||
endif
|
||||
! term depending on (x,y,z-1)
|
||||
val(icoeff)=-a3(x,y,z)/sqdeltah-b3(x,y,z)/deltah2
|
||||
if (iz == 1) then
|
||||
zt(k) = g(x,y,szero)*(-val(icoeff)) + zt(k)
|
||||
else
|
||||
call ijk2idx(icol(icoeff),ix,iy,iz-1,idim,idim,idim)
|
||||
irow(icoeff) = glob_row
|
||||
icoeff = icoeff+1
|
||||
endif
|
||||
|
||||
! term depending on (x,y,z)
|
||||
val(icoeff)=(2*sone)*(a1(x,y,z)+a2(x,y,z)+a3(x,y,z))/sqdeltah &
|
||||
& + c(x,y,z)
|
||||
call ijk2idx(icol(icoeff),ix,iy,iz,idim,idim,idim)
|
||||
irow(icoeff) = glob_row
|
||||
icoeff = icoeff+1
|
||||
! term depending on (x,y,z+1)
|
||||
val(icoeff)=-a3(x,y,z)/sqdeltah+b3(x,y,z)/deltah2
|
||||
if (iz == idim) then
|
||||
zt(k) = g(x,y,sone)*(-val(icoeff)) + zt(k)
|
||||
else
|
||||
call ijk2idx(icol(icoeff),ix,iy,iz+1,idim,idim,idim)
|
||||
irow(icoeff) = glob_row
|
||||
icoeff = icoeff+1
|
||||
endif
|
||||
! term depending on (x,y+1,z)
|
||||
val(icoeff)=-a2(x,y,z)/sqdeltah+b2(x,y,z)/deltah2
|
||||
if (iy == idim) then
|
||||
zt(k) = g(x,sone,z)*(-val(icoeff)) + zt(k)
|
||||
else
|
||||
call ijk2idx(icol(icoeff),ix,iy+1,iz,idim,idim,idim)
|
||||
irow(icoeff) = glob_row
|
||||
icoeff = icoeff+1
|
||||
endif
|
||||
! term depending on (x+1,y,z)
|
||||
val(icoeff)=-a1(x,y,z)/sqdeltah+b1(x,y,z)/deltah2
|
||||
if (ix==idim) then
|
||||
zt(k) = g(sone,y,z)*(-val(icoeff)) + zt(k)
|
||||
else
|
||||
call ijk2idx(icol(icoeff),ix+1,iy,iz,idim,idim,idim)
|
||||
irow(icoeff) = glob_row
|
||||
icoeff = icoeff+1
|
||||
endif
|
||||
|
||||
end do
|
||||
call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
|
||||
if(info /= psb_success_) exit
|
||||
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
|
||||
if(info /= psb_success_) exit
|
||||
zt(:)=szero
|
||||
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
|
||||
if(info /= psb_success_) exit
|
||||
end do
|
||||
|
||||
tgen = psb_wtime()-t1
|
||||
if(info /= psb_success_) then
|
||||
info=psb_err_from_subroutine_
|
||||
ch_err='insert rout.'
|
||||
call psb_errpush(info,name,a_err=ch_err)
|
||||
goto 9999
|
||||
end if
|
||||
|
||||
deallocate(val,irow,icol)
|
||||
|
||||
call psb_barrier(ctxt)
|
||||
t1 = psb_wtime()
|
||||
call psb_cdasb(desc_a,info)
|
||||
tcdasb = psb_wtime()-t1
|
||||
call psb_barrier(ctxt)
|
||||
t1 = psb_wtime()
|
||||
if (info == psb_success_) then
|
||||
if (present(amold)) then
|
||||
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,mold=amold)
|
||||
else
|
||||
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
|
||||
end if
|
||||
end if
|
||||
call psb_barrier(ctxt)
|
||||
if(info /= psb_success_) then
|
||||
info=psb_err_from_subroutine_
|
||||
ch_err='asb rout.'
|
||||
call psb_errpush(info,name,a_err=ch_err)
|
||||
goto 9999
|
||||
end if
|
||||
if (info == psb_success_) call psb_geasb(xv,desc_a,info,mold=vmold)
|
||||
if (info == psb_success_) call psb_geasb(bv,desc_a,info,mold=vmold)
|
||||
if(info /= psb_success_) then
|
||||
info=psb_err_from_subroutine_
|
||||
ch_err='asb rout.'
|
||||
call psb_errpush(info,name,a_err=ch_err)
|
||||
goto 9999
|
||||
end if
|
||||
tasb = psb_wtime()-t1
|
||||
call psb_barrier(ctxt)
|
||||
ttot = psb_wtime() - t0
|
||||
|
||||
call psb_amx(ctxt,talc)
|
||||
call psb_amx(ctxt,tgen)
|
||||
call psb_amx(ctxt,tasb)
|
||||
call psb_amx(ctxt,ttot)
|
||||
if(iam == psb_root_) then
|
||||
tmpfmt = a%get_fmt()
|
||||
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
|
||||
& tmpfmt
|
||||
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
|
||||
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
|
||||
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
|
||||
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
|
||||
write(psb_out_unit,'("-total time : ",es12.5)') ttot
|
||||
|
||||
end if
|
||||
call psb_erractionrestore(err_act)
|
||||
return
|
||||
|
||||
9999 continue
|
||||
call psb_erractionrestore(err_act)
|
||||
if (err_act == psb_act_abort_) then
|
||||
call psb_error(ctxt)
|
||||
return
|
||||
end if
|
||||
return
|
||||
end subroutine amg_s_gen_pde3d
|
||||
|
||||
|
||||
|
||||
!
|
||||
! subroutine to allocate and fill in the coefficient matrix and
|
||||
! the rhs.
|
||||
!
|
||||
subroutine amg_s_gen_pde2d(ctxt,idim,a,bv,xv,desc_a,afmt,&
|
||||
& a1,a2,b1,b2,c,g,info,f,amold,vmold,partition, nrl,iv)
|
||||
use psb_base_mod
|
||||
use psb_util_mod
|
||||
!
|
||||
! Discretizes the partial differential equation
|
||||
!
|
||||
! d d(u) d d(u) b1 d(u) b2 d(u)
|
||||
! - -- a1 ---- - -- a1 ---- + ----- + ------ + c u = f
|
||||
! dx dx dy dy dx dy
|
||||
!
|
||||
! with Dirichlet boundary conditions
|
||||
! u = g
|
||||
!
|
||||
! on the unit square 0<=x,y<=1.
|
||||
!
|
||||
!
|
||||
! Note that if b1=b2=c=0., the PDE is the Laplace equation.
|
||||
!
|
||||
implicit none
|
||||
procedure(s_func_2d) :: b1,b2,c,a1,a2,g
|
||||
integer(psb_ipk_) :: idim
|
||||
type(psb_sspmat_type) :: a
|
||||
type(psb_s_vect_type) :: xv,bv
|
||||
type(psb_desc_type) :: desc_a
|
||||
integer(psb_ipk_) :: info
|
||||
type(psb_ctxt_type) :: ctxt
|
||||
character :: afmt*5
|
||||
procedure(s_func_2d), optional :: f
|
||||
class(psb_s_base_sparse_mat), optional :: amold
|
||||
class(psb_s_base_vect_type), optional :: vmold
|
||||
integer(psb_ipk_), optional :: partition, nrl,iv(:)
|
||||
! Local variables.
|
||||
|
||||
integer(psb_ipk_), parameter :: nb=20
|
||||
type(psb_s_csc_sparse_mat) :: acsc
|
||||
type(psb_s_coo_sparse_mat) :: acoo
|
||||
type(psb_s_csr_sparse_mat) :: acsr
|
||||
real(psb_spk_) :: zt(nb),x,y,z,xph,xmh,yph,ymh,zph,zmh
|
||||
integer(psb_ipk_) :: nnz,nr,nlr,i,j,ii,ib,k, partition_
|
||||
integer(psb_lpk_) :: m,n,glob_row,nt
|
||||
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
|
||||
! For 2D partition
|
||||
! Note: integer control variables going directly into an MPI call
|
||||
! must be 4 bytes, i.e. psb_mpk_
|
||||
integer(psb_mpk_) :: npdims(2), npp, minfo
|
||||
integer(psb_ipk_) :: npx,npy,iamx,iamy,mynx,myny
|
||||
integer(psb_ipk_), allocatable :: bndx(:),bndy(:)
|
||||
! Process grid
|
||||
integer(psb_ipk_) :: np, iam
|
||||
integer(psb_ipk_) :: icoeff
|
||||
integer(psb_lpk_), allocatable :: irow(:),icol(:),myidx(:)
|
||||
real(psb_spk_), allocatable :: val(:)
|
||||
! deltah dimension of each grid cell
|
||||
! deltat discretization time
|
||||
real(psb_spk_) :: deltah, sqdeltah, deltah2, dd
|
||||
real(psb_spk_), parameter :: rhs=0.d0,one=sone,zero=0.d0
|
||||
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
|
||||
integer(psb_ipk_) :: err_act
|
||||
procedure(s_func_2d), pointer :: f_
|
||||
character(len=20) :: name, ch_err,tmpfmt
|
||||
|
||||
info = psb_success_
|
||||
name = 'create_matrix'
|
||||
call psb_erractionsave(err_act)
|
||||
|
||||
call psb_info(ctxt, iam, np)
|
||||
|
||||
|
||||
if (present(f)) then
|
||||
f_ => f
|
||||
else
|
||||
f_ => s_null_func_2d
|
||||
end if
|
||||
|
||||
deltah = sone/(idim+2)
|
||||
sqdeltah = deltah*deltah
|
||||
deltah2 = 2.0_psb_spk_* deltah
|
||||
|
||||
|
||||
if (present(partition)) then
|
||||
if ((1<= partition).and.(partition <= 3)) then
|
||||
partition_ = partition
|
||||
else
|
||||
write(*,*) 'Invalid partition choice ',partition,' defaulting to 3'
|
||||
partition_ = 3
|
||||
end if
|
||||
else
|
||||
partition_ = 3
|
||||
end if
|
||||
|
||||
! initialize array descriptor and sparse matrix storage. provide an
|
||||
! estimate of the number of non zeroes
|
||||
|
||||
m = (1_psb_lpk_)*idim*idim
|
||||
n = m
|
||||
nnz = 7*((n+np-1)/np)
|
||||
if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
|
||||
t0 = psb_wtime()
|
||||
select case(partition_)
|
||||
case(1)
|
||||
! A BLOCK partition
|
||||
if (present(nrl)) then
|
||||
nr = nrl
|
||||
else
|
||||
!
|
||||
! Using a simple BLOCK distribution.
|
||||
!
|
||||
nt = (m+np-1)/np
|
||||
nr = max(0,min(nt,m-(iam*nt)))
|
||||
end if
|
||||
|
||||
nt = nr
|
||||
call psb_sum(ctxt,nt)
|
||||
if (nt /= m) then
|
||||
write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
|
||||
info = -1
|
||||
call psb_barrier(ctxt)
|
||||
call psb_abort(ctxt)
|
||||
return
|
||||
end if
|
||||
|
||||
!
|
||||
! First example of use of CDALL: specify for each process a number of
|
||||
! contiguous rows
|
||||
!
|
||||
call psb_cdall(ctxt,desc_a,info,nl=nr)
|
||||
myidx = desc_a%get_global_indices()
|
||||
nlr = size(myidx)
|
||||
|
||||
case(2)
|
||||
! A partition defined by the user through IV
|
||||
|
||||
if (present(iv)) then
|
||||
if (size(iv) /= m) then
|
||||
write(psb_err_unit,*) iam, 'Initialization error: wrong IV size',size(iv),m
|
||||
info = -1
|
||||
call psb_barrier(ctxt)
|
||||
call psb_abort(ctxt)
|
||||
return
|
||||
end if
|
||||
else
|
||||
write(psb_err_unit,*) iam, 'Initialization error: IV not present'
|
||||
info = -1
|
||||
call psb_barrier(ctxt)
|
||||
call psb_abort(ctxt)
|
||||
return
|
||||
end if
|
||||
|
||||
!
|
||||
! Second example of use of CDALL: specify for each row the
|
||||
! process that owns it
|
||||
!
|
||||
call psb_cdall(ctxt,desc_a,info,vg=iv)
|
||||
myidx = desc_a%get_global_indices()
|
||||
nlr = size(myidx)
|
||||
|
||||
case(3)
|
||||
! A 2-dimensional partition
|
||||
|
||||
! A nifty MPI function will split the process list
|
||||
npdims = 0
|
||||
call mpi_dims_create(np,2,npdims,info)
|
||||
npx = npdims(1)
|
||||
npy = npdims(2)
|
||||
|
||||
allocate(bndx(0:npx),bndy(0:npy))
|
||||
! We can reuse idx2ijk for process indices as well.
|
||||
call idx2ijk(iamx,iamy,iam,npx,npy,base=0)
|
||||
! Now let's split the 2D square in rectangles
|
||||
call dist1Didx(bndx,idim,npx)
|
||||
mynx = bndx(iamx+1)-bndx(iamx)
|
||||
call dist1Didx(bndy,idim,npy)
|
||||
myny = bndy(iamy+1)-bndy(iamy)
|
||||
|
||||
! How many indices do I own?
|
||||
nlr = mynx*myny
|
||||
allocate(myidx(nlr))
|
||||
! Now, let's generate the list of indices I own
|
||||
nr = 0
|
||||
do i=bndx(iamx),bndx(iamx+1)-1
|
||||
do j=bndy(iamy),bndy(iamy+1)-1
|
||||
nr = nr + 1
|
||||
call ijk2idx(myidx(nr),i,j,idim,idim)
|
||||
end do
|
||||
end do
|
||||
if (nr /= nlr) then
|
||||
write(psb_err_unit,*) iam,iamx,iamy, 'Initialization error: NR vs NLR ',&
|
||||
& nr,nlr,mynx,myny
|
||||
info = -1
|
||||
call psb_barrier(ctxt)
|
||||
call psb_abort(ctxt)
|
||||
end if
|
||||
|
||||
!
|
||||
! Third example of use of CDALL: specify for each process
|
||||
! the set of global indices it owns.
|
||||
!
|
||||
call psb_cdall(ctxt,desc_a,info,vl=myidx)
|
||||
|
||||
case default
|
||||
write(psb_err_unit,*) iam, 'Initialization error: should not get here'
|
||||
info = -1
|
||||
call psb_barrier(ctxt)
|
||||
call psb_abort(ctxt)
|
||||
return
|
||||
end select
|
||||
|
||||
|
||||
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
|
||||
! define rhs from boundary conditions; also build initial guess
|
||||
if (info == psb_success_) call psb_geall(xv,desc_a,info)
|
||||
if (info == psb_success_) call psb_geall(bv,desc_a,info)
|
||||
|
||||
call psb_barrier(ctxt)
|
||||
talc = psb_wtime()-t0
|
||||
|
||||
if (info /= psb_success_) then
|
||||
info=psb_err_from_subroutine_
|
||||
ch_err='allocation rout.'
|
||||
call psb_errpush(info,name,a_err=ch_err)
|
||||
goto 9999
|
||||
end if
|
||||
|
||||
! we build an auxiliary matrix consisting of one row at a
|
||||
! time; just a small matrix. might be extended to generate
|
||||
! a bunch of rows per call.
|
||||
!
|
||||
allocate(val(20*nb),irow(20*nb),&
|
||||
&icol(20*nb),stat=info)
|
||||
if (info /= psb_success_ ) then
|
||||
info=psb_err_alloc_dealloc_
|
||||
call psb_errpush(info,name)
|
||||
goto 9999
|
||||
endif
|
||||
|
||||
|
||||
! loop over rows belonging to current process in a block
|
||||
! distribution.
|
||||
|
||||
call psb_barrier(ctxt)
|
||||
t1 = psb_wtime()
|
||||
do ii=1, nlr,nb
|
||||
ib = min(nb,nlr-ii+1)
|
||||
icoeff = 1
|
||||
do k=1,ib
|
||||
i=ii+k-1
|
||||
! local matrix pointer
|
||||
glob_row=myidx(i)
|
||||
! compute gridpoint coordinates
|
||||
call idx2ijk(ix,iy,glob_row,idim,idim)
|
||||
! x, y coordinates
|
||||
x = (ix-1)*deltah
|
||||
y = (iy-1)*deltah
|
||||
|
||||
zt(k) = f_(x,y)
|
||||
! internal point: build discretization
|
||||
!
|
||||
! term depending on (x-1,y)
|
||||
!
|
||||
val(icoeff) = -a1(x,y)/sqdeltah-b1(x,y)/deltah2
|
||||
if (ix == 1) then
|
||||
zt(k) = g(szero,y)*(-val(icoeff)) + zt(k)
|
||||
else
|
||||
call ijk2idx(icol(icoeff),ix-1,iy,idim,idim)
|
||||
irow(icoeff) = glob_row
|
||||
icoeff = icoeff+1
|
||||
endif
|
||||
! term depending on (x,y-1)
|
||||
val(icoeff) = -a2(x,y)/sqdeltah-b2(x,y)/deltah2
|
||||
if (iy == 1) then
|
||||
zt(k) = g(x,szero)*(-val(icoeff)) + zt(k)
|
||||
else
|
||||
call ijk2idx(icol(icoeff),ix,iy-1,idim,idim)
|
||||
irow(icoeff) = glob_row
|
||||
icoeff = icoeff+1
|
||||
endif
|
||||
|
||||
! term depending on (x,y)
|
||||
val(icoeff)=(2*sone)*(a1(x,y) + a2(x,y))/sqdeltah + c(x,y)
|
||||
call ijk2idx(icol(icoeff),ix,iy,idim,idim)
|
||||
irow(icoeff) = glob_row
|
||||
icoeff = icoeff+1
|
||||
! term depending on (x,y+1)
|
||||
val(icoeff)=-a2(x,y)/sqdeltah+b2(x,y)/deltah2
|
||||
if (iy == idim) then
|
||||
zt(k) = g(x,sone)*(-val(icoeff)) + zt(k)
|
||||
else
|
||||
call ijk2idx(icol(icoeff),ix,iy+1,idim,idim)
|
||||
irow(icoeff) = glob_row
|
||||
icoeff = icoeff+1
|
||||
endif
|
||||
! term depending on (x+1,y)
|
||||
val(icoeff)=-a1(x,y)/sqdeltah+b1(x,y)/deltah2
|
||||
if (ix==idim) then
|
||||
zt(k) = g(sone,y)*(-val(icoeff)) + zt(k)
|
||||
else
|
||||
call ijk2idx(icol(icoeff),ix+1,iy,idim,idim)
|
||||
irow(icoeff) = glob_row
|
||||
icoeff = icoeff+1
|
||||
endif
|
||||
|
||||
end do
|
||||
call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
|
||||
if(info /= psb_success_) exit
|
||||
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
|
||||
if(info /= psb_success_) exit
|
||||
zt(:)=szero
|
||||
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
|
||||
if(info /= psb_success_) exit
|
||||
end do
|
||||
|
||||
tgen = psb_wtime()-t1
|
||||
if(info /= psb_success_) then
|
||||
info=psb_err_from_subroutine_
|
||||
ch_err='insert rout.'
|
||||
call psb_errpush(info,name,a_err=ch_err)
|
||||
goto 9999
|
||||
end if
|
||||
|
||||
deallocate(val,irow,icol)
|
||||
|
||||
call psb_barrier(ctxt)
|
||||
t1 = psb_wtime()
|
||||
call psb_cdasb(desc_a,info)
|
||||
tcdasb = psb_wtime()-t1
|
||||
call psb_barrier(ctxt)
|
||||
t1 = psb_wtime()
|
||||
if (info == psb_success_) then
|
||||
if (present(amold)) then
|
||||
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,mold=amold)
|
||||
else
|
||||
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
|
||||
end if
|
||||
end if
|
||||
call psb_barrier(ctxt)
|
||||
if(info /= psb_success_) then
|
||||
info=psb_err_from_subroutine_
|
||||
ch_err='asb rout.'
|
||||
call psb_errpush(info,name,a_err=ch_err)
|
||||
goto 9999
|
||||
end if
|
||||
if (info == psb_success_) call psb_geasb(xv,desc_a,info,mold=vmold)
|
||||
if (info == psb_success_) call psb_geasb(bv,desc_a,info,mold=vmold)
|
||||
if(info /= psb_success_) then
|
||||
info=psb_err_from_subroutine_
|
||||
ch_err='asb rout.'
|
||||
call psb_errpush(info,name,a_err=ch_err)
|
||||
goto 9999
|
||||
end if
|
||||
tasb = psb_wtime()-t1
|
||||
call psb_barrier(ctxt)
|
||||
ttot = psb_wtime() - t0
|
||||
|
||||
call psb_amx(ctxt,talc)
|
||||
call psb_amx(ctxt,tgen)
|
||||
call psb_amx(ctxt,tasb)
|
||||
call psb_amx(ctxt,ttot)
|
||||
if(iam == psb_root_) then
|
||||
tmpfmt = a%get_fmt()
|
||||
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
|
||||
& tmpfmt
|
||||
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
|
||||
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
|
||||
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
|
||||
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
|
||||
write(psb_out_unit,'("-total time : ",es12.5)') ttot
|
||||
|
||||
end if
|
||||
call psb_erractionrestore(err_act)
|
||||
return
|
||||
|
||||
9999 continue
|
||||
call psb_erractionrestore(err_act)
|
||||
if (err_act == psb_act_abort_) then
|
||||
call psb_error(ctxt)
|
||||
return
|
||||
end if
|
||||
return
|
||||
end subroutine amg_s_gen_pde2d
|
||||
end module amg_s_genpde_mod
|
@ -0,0 +1,53 @@
|
||||
module amg_s_pde2d_base_mod
|
||||
use psb_base_mod, only : psb_spk_, szero, sone
|
||||
real(psb_spk_), save, private :: epsilon=sone/80
|
||||
contains
|
||||
subroutine pde_set_parm(dat)
|
||||
real(psb_spk_), intent(in) :: dat
|
||||
epsilon = dat
|
||||
end subroutine pde_set_parm
|
||||
!
|
||||
! functions parametrizing the differential equation
|
||||
!
|
||||
function b1(x,y)
|
||||
use psb_base_mod, only : psb_spk_, szero, sone
|
||||
real(psb_spk_) :: b1
|
||||
real(psb_spk_), intent(in) :: x,y
|
||||
b1 = szero/1.414_psb_spk_
|
||||
end function b1
|
||||
function b2(x,y)
|
||||
use psb_base_mod, only : psb_spk_, szero, sone
|
||||
real(psb_spk_) :: b2
|
||||
real(psb_spk_), intent(in) :: x,y
|
||||
b2 = szero/1.414_psb_spk_
|
||||
end function b2
|
||||
function c(x,y)
|
||||
use psb_base_mod, only : psb_spk_, szero, sone
|
||||
real(psb_spk_) :: c
|
||||
real(psb_spk_), intent(in) :: x,y
|
||||
c = szero
|
||||
end function c
|
||||
function a1(x,y)
|
||||
use psb_base_mod, only : psb_spk_, szero, sone
|
||||
real(psb_spk_) :: a1
|
||||
real(psb_spk_), intent(in) :: x,y
|
||||
a1=sone*epsilon
|
||||
end function a1
|
||||
function a2(x,y)
|
||||
use psb_base_mod, only : psb_spk_, szero, sone
|
||||
real(psb_spk_) :: a2
|
||||
real(psb_spk_), intent(in) :: x,y
|
||||
a2=sone*epsilon
|
||||
end function a2
|
||||
function g(x,y)
|
||||
use psb_base_mod, only : psb_spk_, szero, sone
|
||||
real(psb_spk_) :: g
|
||||
real(psb_spk_), intent(in) :: x,y
|
||||
g = szero
|
||||
if (x == sone) then
|
||||
g = sone
|
||||
else if (x == szero) then
|
||||
g = sone
|
||||
end if
|
||||
end function g
|
||||
end module amg_s_pde2d_base_mod
|
@ -0,0 +1,53 @@
|
||||
module amg_s_pde2d_box_mod
|
||||
use psb_base_mod, only : psb_spk_, szero, sone
|
||||
real(psb_spk_), save, private :: epsilon=sone/80
|
||||
contains
|
||||
subroutine pde_set_parm(dat)
|
||||
real(psb_spk_), intent(in) :: dat
|
||||
epsilon = dat
|
||||
end subroutine pde_set_parm
|
||||
!
|
||||
! functions parametrizing the differential equation
|
||||
!
|
||||
function b1_box(x,y)
|
||||
use psb_base_mod, only : psb_spk_, szero, sone
|
||||
real(psb_spk_) :: b1_box
|
||||
real(psb_spk_), intent(in) :: x,y
|
||||
b1_box = sone/1.414_psb_spk_
|
||||
end function b1_box
|
||||
function b2_box(x,y)
|
||||
use psb_base_mod, only : psb_spk_, szero, sone
|
||||
real(psb_spk_) :: b2_box
|
||||
real(psb_spk_), intent(in) :: x,y
|
||||
b2_box = sone/1.414_psb_spk_
|
||||
end function b2_box
|
||||
function c_box(x,y)
|
||||
use psb_base_mod, only : psb_spk_, szero, sone
|
||||
real(psb_spk_) :: c_box
|
||||
real(psb_spk_), intent(in) :: x,y
|
||||
c_box = szero
|
||||
end function c_box
|
||||
function a1_box(x,y)
|
||||
use psb_base_mod, only : psb_spk_, szero, sone
|
||||
real(psb_spk_) :: a1_box
|
||||
real(psb_spk_), intent(in) :: x,y
|
||||
a1_box=sone*epsilon
|
||||
end function a1_box
|
||||
function a2_box(x,y)
|
||||
use psb_base_mod, only : psb_spk_, szero, sone
|
||||
real(psb_spk_) :: a2_box
|
||||
real(psb_spk_), intent(in) :: x,y
|
||||
a2_box=sone*epsilon
|
||||
end function a2_box
|
||||
function g_box(x,y)
|
||||
use psb_base_mod, only : psb_spk_, szero, sone
|
||||
real(psb_spk_) :: g_box
|
||||
real(psb_spk_), intent(in) :: x,y
|
||||
g_box = szero
|
||||
if (x == sone) then
|
||||
g_box = sone
|
||||
else if (x == szero) then
|
||||
g_box = sone
|
||||
end if
|
||||
end function g_box
|
||||
end module amg_s_pde2d_box_mod
|
@ -0,0 +1,53 @@
|
||||
module amg_s_pde2d_exp_mod
|
||||
use psb_base_mod, only : psb_spk_, sone, szero
|
||||
real(psb_spk_), save, private :: epsilon=sone/80
|
||||
contains
|
||||
subroutine pde_set_parm(dat)
|
||||
real(psb_spk_), intent(in) :: dat
|
||||
epsilon = dat
|
||||
end subroutine pde_set_parm
|
||||
!
|
||||
! functions parametrizing the differential equation
|
||||
!
|
||||
function b1_exp(x,y)
|
||||
use psb_base_mod, only : psb_spk_, sone, szero
|
||||
real(psb_spk_) :: b1_exp
|
||||
real(psb_spk_), intent(in) :: x,y
|
||||
b1_exp = szero
|
||||
end function b1_exp
|
||||
function b2_exp(x,y)
|
||||
use psb_base_mod, only : psb_spk_, sone, szero
|
||||
real(psb_spk_) :: b2_exp
|
||||
real(psb_spk_), intent(in) :: x,y
|
||||
b2_exp = szero
|
||||
end function b2_exp
|
||||
function c_exp(x,y)
|
||||
use psb_base_mod, only : psb_spk_, sone, szero
|
||||
real(psb_spk_) :: c_exp
|
||||
real(psb_spk_), intent(in) :: x,y
|
||||
c_exp = szero
|
||||
end function c_exp
|
||||
function a1_exp(x,y)
|
||||
use psb_base_mod, only : psb_spk_, sone, szero
|
||||
real(psb_spk_) :: a1_exp
|
||||
real(psb_spk_), intent(in) :: x,y
|
||||
a1=sone*epsilon*exp(-(x+y))
|
||||
end function a1_exp
|
||||
function a2_exp(x,y)
|
||||
use psb_base_mod, only : psb_spk_, sone, szero
|
||||
real(psb_spk_) :: a2_exp
|
||||
real(psb_spk_), intent(in) :: x,y
|
||||
a2=sone*epsilon*exp(-(x+y))
|
||||
end function a2_exp
|
||||
function g_exp(x,y)
|
||||
use psb_base_mod, only : psb_spk_, sone, szero
|
||||
real(psb_spk_) :: g_exp
|
||||
real(psb_spk_), intent(in) :: x,y
|
||||
g_exp = szero
|
||||
if (x == sone) then
|
||||
g_exp = sone
|
||||
else if (x == szero) then
|
||||
g_exp = sone
|
||||
end if
|
||||
end function g_exp
|
||||
end module amg_s_pde2d_exp_mod
|
@ -0,0 +1,65 @@
|
||||
module amg_s_pde3d_base_mod
|
||||
use psb_base_mod, only : psb_spk_, sone
|
||||
real(psb_spk_), save, private :: epsilon=sone/80
|
||||
contains
|
||||
subroutine pde_set_parm(dat)
|
||||
real(psb_spk_), intent(in) :: dat
|
||||
epsilon = dat
|
||||
end subroutine pde_set_parm
|
||||
!
|
||||
! functions parametrizing the differential equation
|
||||
!
|
||||
function b1(x,y,z)
|
||||
use psb_base_mod, only : psb_spk_, sone
|
||||
real(psb_spk_) :: b1
|
||||
real(psb_spk_), intent(in) :: x,y,z
|
||||
b1=sone/sqrt(3.0_psb_spk_)
|
||||
end function b1
|
||||
function b2(x,y,z)
|
||||
use psb_base_mod, only : psb_spk_, sone
|
||||
real(psb_spk_) :: b2
|
||||
real(psb_spk_), intent(in) :: x,y,z
|
||||
b2=sone/sqrt(3.0_psb_spk_)
|
||||
end function b2
|
||||
function b3(x,y,z)
|
||||
use psb_base_mod, only : psb_spk_, sone
|
||||
real(psb_spk_) :: b3
|
||||
real(psb_spk_), intent(in) :: x,y,z
|
||||
b3=sone/sqrt(3.0_psb_spk_)
|
||||
end function b3
|
||||
function c(x,y,z)
|
||||
use psb_base_mod, only : psb_spk_, sone
|
||||
real(psb_spk_) :: c
|
||||
real(psb_spk_), intent(in) :: x,y,z
|
||||
c=szero
|
||||
end function c
|
||||
function a1(x,y,z)
|
||||
use psb_base_mod, only : psb_spk_
|
||||
real(psb_spk_) :: a1
|
||||
real(psb_spk_), intent(in) :: x,y,z
|
||||
a1=epsilon
|
||||
end function a1
|
||||
function a2(x,y,z)
|
||||
use psb_base_mod, only : psb_spk_
|
||||
real(psb_spk_) :: a2
|
||||
real(psb_spk_), intent(in) :: x,y,z
|
||||
a2=epsilon
|
||||
end function a2
|
||||
function a3(x,y,z)
|
||||
use psb_base_mod, only : psb_spk_
|
||||
real(psb_spk_) :: a3
|
||||
real(psb_spk_), intent(in) :: x,y,z
|
||||
a3=epsilon
|
||||
end function a3
|
||||
function g(x,y,z)
|
||||
use psb_base_mod, only : psb_spk_, sone, szero
|
||||
real(psb_spk_) :: g
|
||||
real(psb_spk_), intent(in) :: x,y,z
|
||||
g = szero
|
||||
if (x == sone) then
|
||||
g = sone
|
||||
else if (x == szero) then
|
||||
g = sone
|
||||
end if
|
||||
end function g
|
||||
end module amg_s_pde3d_base_mod
|
@ -0,0 +1,65 @@
|
||||
module amg_s_pde3d_exp_mod
|
||||
use psb_base_mod, only : psb_spk_, sone
|
||||
real(psb_spk_), save, private :: epsilon=sone/160
|
||||
contains
|
||||
subroutine pde_set_parm(dat)
|
||||
real(psb_spk_), intent(in) :: dat
|
||||
epsilon = dat
|
||||
end subroutine pde_set_parm
|
||||
!
|
||||
! functions parametrizing the differential equation
|
||||
!
|
||||
function b1_exp(x,y,z)
|
||||
use psb_base_mod, only : psb_spk_, szero
|
||||
real(psb_spk_) :: b1_exp
|
||||
real(psb_spk_), intent(in) :: x,y,z
|
||||
b1_exp=szero/sqrt(3.0_psb_spk_)
|
||||
end function b1_exp
|
||||
function b2_exp(x,y,z)
|
||||
use psb_base_mod, only : psb_spk_, szero
|
||||
real(psb_spk_) :: b2_exp
|
||||
real(psb_spk_), intent(in) :: x,y,z
|
||||
b2_exp=szero/sqrt(3.0_psb_spk_)
|
||||
end function b2_exp
|
||||
function b3_exp(x,y,z)
|
||||
use psb_base_mod, only : psb_spk_, szero
|
||||
real(psb_spk_) :: b3_exp
|
||||
real(psb_spk_), intent(in) :: x,y,z
|
||||
b3_exp=szero/sqrt(3.0_psb_spk_)
|
||||
end function b3_exp
|
||||
function c_exp(x,y,z)
|
||||
use psb_base_mod, only : psb_spk_, szero
|
||||
real(psb_spk_) :: c_exp
|
||||
real(psb_spk_), intent(in) :: x,y,z
|
||||
c_exp=szero
|
||||
end function c_exp
|
||||
function a1_exp(x,y,z)
|
||||
use psb_base_mod, only : psb_spk_
|
||||
real(psb_spk_) :: a1_exp
|
||||
real(psb_spk_), intent(in) :: x,y,z
|
||||
a1_exp=epsilon*exp(-(x+y+z))
|
||||
end function a1_exp
|
||||
function a2_exp(x,y,z)
|
||||
use psb_base_mod, only : psb_spk_
|
||||
real(psb_spk_) :: a2_exp
|
||||
real(psb_spk_), intent(in) :: x,y,z
|
||||
a2_exp=epsilon*exp(-(x+y+z))
|
||||
end function a2_exp
|
||||
function a3_exp(x,y,z)
|
||||
use psb_base_mod, only : psb_spk_
|
||||
real(psb_spk_) :: a3_exp
|
||||
real(psb_spk_), intent(in) :: x,y,z
|
||||
a3_exp=epsilon*exp(-(x+y+z))
|
||||
end function a3_exp
|
||||
function g_exp(x,y,z)
|
||||
use psb_base_mod, only : psb_spk_, sone, szero
|
||||
real(psb_spk_) :: g_exp
|
||||
real(psb_spk_), intent(in) :: x,y,z
|
||||
g_exp = szero
|
||||
if (x == sone) then
|
||||
g_exp = sone
|
||||
else if (x == szero) then
|
||||
g_exp = sone
|
||||
end if
|
||||
end function g_exp
|
||||
end module amg_s_pde3d_exp_mod
|
@ -0,0 +1,65 @@
|
||||
module amg_s_pde3d_gauss_mod
|
||||
use psb_base_mod, only : psb_spk_, sone
|
||||
real(psb_spk_), save, private :: epsilon=sone/80
|
||||
contains
|
||||
subroutine pde_set_parm(dat)
|
||||
real(psb_spk_), intent(in) :: dat
|
||||
epsilon = dat
|
||||
end subroutine pde_set_parm
|
||||
!
|
||||
! functions parametrizing the differential equation
|
||||
!
|
||||
function b1_gauss(x,y,z)
|
||||
use psb_base_mod, only : psb_spk_, sone
|
||||
real(psb_spk_) :: b1_gauss
|
||||
real(psb_spk_), intent(in) :: x,y,z
|
||||
b1_gauss=sone/sqrt(3.0_psb_spk_)-2*x*exp(-(x**2+y**2+z**2))
|
||||
end function b1_gauss
|
||||
function b2_gauss(x,y,z)
|
||||
use psb_base_mod, only : psb_spk_, sone
|
||||
real(psb_spk_) :: b2_gauss
|
||||
real(psb_spk_), intent(in) :: x,y,z
|
||||
b2_gauss=sone/sqrt(3.0_psb_spk_)-2*y*exp(-(x**2+y**2+z**2))
|
||||
end function b2_gauss
|
||||
function b3_gauss(x,y,z)
|
||||
use psb_base_mod, only : psb_spk_, sone
|
||||
real(psb_spk_) :: b3_gauss
|
||||
real(psb_spk_), intent(in) :: x,y,z
|
||||
b3_gauss=sone/sqrt(3.0_psb_spk_)-2*z*exp(-(x**2+y**2+z**2))
|
||||
end function b3_gauss
|
||||
function c_gauss(x,y,z)
|
||||
use psb_base_mod, only : psb_spk_, szero
|
||||
real(psb_spk_) :: c_gauss
|
||||
real(psb_spk_), intent(in) :: x,y,z
|
||||
c=szero
|
||||
end function c_gauss
|
||||
function a1_gauss(x,y,z)
|
||||
use psb_base_mod, only : psb_spk_
|
||||
real(psb_spk_) :: a1_gauss
|
||||
real(psb_spk_), intent(in) :: x,y,z
|
||||
a1_gauss=epsilon*exp(-(x**2+y**2+z**2))
|
||||
end function a1_gauss
|
||||
function a2_gauss(x,y,z)
|
||||
use psb_base_mod, only : psb_spk_
|
||||
real(psb_spk_) :: a2_gauss
|
||||
real(psb_spk_), intent(in) :: x,y,z
|
||||
a2_gauss=epsilon*exp(-(x**2+y**2+z**2))
|
||||
end function a2_gauss
|
||||
function a3_gauss(x,y,z)
|
||||
use psb_base_mod, only : psb_spk_
|
||||
real(psb_spk_) :: a3_gauss
|
||||
real(psb_spk_), intent(in) :: x,y,z
|
||||
a3_gauss=epsilon*exp(-(x**2+y**2+z**2))
|
||||
end function a3_gauss
|
||||
function g_gauss(x,y,z)
|
||||
use psb_base_mod, only : psb_spk_, sone, szero
|
||||
real(psb_spk_) :: g_gauss
|
||||
real(psb_spk_), intent(in) :: x,y,z
|
||||
g_gauss = szero
|
||||
if (x == sone) then
|
||||
g_gauss = sone
|
||||
else if (x == szero) then
|
||||
g_gauss = sone
|
||||
end if
|
||||
end function g_gauss
|
||||
end module amg_s_pde3d_gauss_mod
|
Loading…
Reference in New Issue