Added command for inline code highlighting

documentation
Cirdans-Home 4 years ago
parent 1188b6d9b3
commit 7af511a218

Binary file not shown.

@ -10,7 +10,7 @@
<link rel="stylesheet" type="text/css" href="userhtml.css">
</head><body
>
<!--l. 95--><p class="noindent" ><span
<!--l. 100--><p class="noindent" ><span
class="cmbx-12x-x-144">MLD2P4</span><br
class="newline" /> <span
class="cmbx-12x-x-144">User&#8217;s and Reference Guide</span><br

@ -10,7 +10,7 @@
<link rel="stylesheet" type="text/css" href="userhtml.css">
</head><body
>
<!--l. 95--><p class="noindent" ><span
<!--l. 100--><p class="noindent" ><span
class="cmbx-12x-x-144">MLD2P4</span><br
class="newline" /> <span
class="cmbx-12x-x-144">User&#8217;s and Reference Guide</span><br

@ -147,7 +147,7 @@ class="cmr-12">of AMG4PSBLAS.</span>
<!--l. 125--><div class="crosslinks"><p class="noindent"><span
<!--l. 130--><div class="crosslinks"><p class="noindent"><span
class="cmr-12">[</span><a
href="userhtmlli2.html" ><span
class="cmr-12">next</span></a><span
@ -158,6 +158,6 @@ class="cmr-12">] [</span><a
href="userhtml.html#userhtmlli1.html" ><span
class="cmr-12">up</span></a><span
class="cmr-12">] </span></p></div>
<!--l. 125--><p class="indent" > <a
<!--l. 130--><p class="indent" > <a
id="tailuserhtmlli1.html"></a>
</body></html>

@ -10,7 +10,7 @@
<link rel="stylesheet" type="text/css" href="userhtml.css">
</head><body
>
<!--l. 125--><div class="crosslinks"><p class="noindent"><span
<!--l. 130--><div class="crosslinks"><p class="noindent"><span
class="cmr-12">[</span><a
href="userhtmlse1.html" ><span
class="cmr-12">next</span></a><span

@ -659,7 +659,7 @@ class="cmr-12">Transactions on Mathematical Software, 44, (2018) 39:1&#8211;39:2
<!--l. 147--><div class="crosslinks"><p class="noindent"><span
<!--l. 152--><div class="crosslinks"><p class="noindent"><span
class="cmr-12">[</span><a
href="userhtmlse8.html" ><span
class="cmr-12">prev</span></a><span
@ -673,6 +673,6 @@ class="cmr-12">] [</span><a
href="userhtml.html#userhtmlli4.html" ><span
class="cmr-12">up</span></a><span
class="cmr-12">] </span></p></div>
<!--l. 147--><p class="indent" > <a
<!--l. 152--><p class="indent" > <a
id="tailuserhtmlli4.html"></a>
</body></html>

@ -274,20 +274,30 @@ class="small-caps">r</span></span> </td></tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-1-2-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-2-1"
class="td11">No preconditioner </td><td style="white-space:wrap; text-align:left;" id="TBL-1-2-2"
class="td11"><!--l. 62--><p class="noindent" ><span class="obeylines-h"><span class="verb"><span
class="cmtt-10x-x-109">&#8217;NONE&#8217;</span></span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-2-3"
class="td11"><!--l. 62--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">NONE</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-2-3"
class="td11"><!--l. 62--><p class="noindent" >Considered to use the PSBLAS Krylov
solvers with no preconditioner. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-1-3-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-3-1"
class="td11">Diagonal </td><td style="white-space:wrap; text-align:left;" id="TBL-1-3-2"
class="td11"><!--l. 64--><p class="noindent" ><span class="obeylines-h"><span class="verb"><span
class="cmtt-10x-x-109">&#8217;DIAG&#8217;</span></span></span>,
<span class="obeylines-h"><span class="verb"><span
class="cmtt-10x-x-109">&#8217;JACOBI&#8217;</span></span></span>,
<span class="obeylines-h"><span class="verb"><span
class="cmtt-10x-x-109">&#8217;L1-JACOBI&#8217;</span></span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-3-3"
class="td11"><!--l. 64--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">DIAG</span><span
class="cmtt-10x-x-109">&#8217;</span>,
<span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">JACOBI</span><span
class="cmtt-10x-x-109">&#8217;</span>,
<span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">L1</span><span
class="cmtt-10x-x-109">-</span><span
class="cmtt-10x-x-109">JACOBI</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-3-3"
class="td11"><!--l. 64--><p class="noindent" >Diagonal preconditioner. For any zero
diagonal entry of the matrix to be
preconditioned, the corresponding entry
@ -296,10 +306,16 @@ of the preconditioner is set to&#x00A0;1. </td>
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-1-4-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-4-1"
class="td11">Gauss-Seidel </td><td style="white-space:wrap; text-align:left;" id="TBL-1-4-2"
class="td11"><!--l. 67--><p class="noindent" ><span class="obeylines-h"><span class="verb"><span
class="cmtt-10x-x-109">&#8217;GS&#8217;</span></span></span>,
<span class="obeylines-h"><span class="verb"><span
class="cmtt-10x-x-109">&#8217;L1-GS&#8217;</span></span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-4-3"
class="td11"><!--l. 67--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">GS</span><span
class="cmtt-10x-x-109">&#8217;</span>,
<span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">L1</span><span
class="cmtt-10x-x-109">-</span><span
class="cmtt-10x-x-109">GS</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-4-3"
class="td11"><!--l. 67--><p class="noindent" >Hybrid Gauss-Seidel (forward), that is,
global block Jacobi with Gauss-Seidel as
local solver. </td>
@ -307,10 +323,16 @@ local solver. </td>
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-1-5-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-5-1"
class="td11">Symmetrized Gauss-Seidel</td><td style="white-space:wrap; text-align:left;" id="TBL-1-5-2"
class="td11"><!--l. 70--><p class="noindent" ><span class="obeylines-h"><span class="verb"><span
class="cmtt-10x-x-109">&#8217;FBGS&#8217;</span></span></span>,
<span class="obeylines-h"><span class="verb"><span
class="cmtt-10x-x-109">&#8217;L1-FBGS&#8217;</span></span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-5-3"
class="td11"><!--l. 70--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">FBGS</span><span
class="cmtt-10x-x-109">&#8217;</span>,
<span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">L1</span><span
class="cmtt-10x-x-109">-</span><span
class="cmtt-10x-x-109">FBGS</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-5-3"
class="td11"><!--l. 70--><p class="noindent" >Symmetrized hybrid Gauss-Seidel, that
is, forward Gauss-Seidel followed by
backward Gauss-Seidel. </td>
@ -318,26 +340,36 @@ backward Gauss-Seidel. </td>
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-1-6-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-6-1"
class="td11">Block Jacobi </td><td style="white-space:wrap; text-align:left;" id="TBL-1-6-2"
class="td11"><!--l. 73--><p class="noindent" ><span class="obeylines-h"><span class="verb"><span
class="cmtt-10x-x-109">&#8217;BJAC&#8217;</span></span></span>,
<span class="obeylines-h"><span class="verb"><span
class="cmtt-10x-x-109">&#8217;L1-BJAC&#8217;</span></span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-6-3"
class="td11"><!--l. 73--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">BJAC</span><span
class="cmtt-10x-x-109">&#8217;</span>,
<span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">L1</span><span
class="cmtt-10x-x-109">-</span><span
class="cmtt-10x-x-109">BJAC</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-6-3"
class="td11"><!--l. 73--><p class="noindent" >Block-Jacobi with ILU(0) on the local
blocks. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-1-7-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-7-1"
class="td11">Additive Schwarz </td><td style="white-space:wrap; text-align:left;" id="TBL-1-7-2"
class="td11"><!--l. 74--><p class="noindent" ><span class="obeylines-h"><span class="verb"><span
class="cmtt-10x-x-109">&#8217;AS&#8217;</span></span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-7-3"
class="td11"><!--l. 74--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">AS</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-7-3"
class="td11"><!--l. 74--><p class="noindent" >Additive Schwarz (AS), with overlap&#x00A0;1
and ILU(0) on the local blocks. </td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td></tr><tr
style="vertical-align:baseline;" id="TBL-1-8-"><td style="white-space:nowrap; text-align:left;" id="TBL-1-8-1"
class="td11">Multilevel </td><td style="white-space:wrap; text-align:left;" id="TBL-1-8-2"
class="td11"><!--l. 76--><p class="noindent" ><span class="obeylines-h"><span class="verb"><span
class="cmtt-10x-x-109">&#8217;ML&#8217;</span></span></span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-8-3"
class="td11"><!--l. 76--><p class="noindent" ><span class="lstinline"></span><span
class="cmtt-10x-x-109">&#8217;</span><span
class="cmtt-10x-x-109">ML</span><span
class="cmtt-10x-x-109">&#8217;</span> </td><td style="white-space:wrap; text-align:left;" id="TBL-1-8-3"
class="td11"><!--l. 76--><p class="noindent" >V-cycle with one hybrid
forward Gauss-Seidel (GS) sweep as
pre-smoother and one hybrid backward

@ -128,7 +128,7 @@ class="cmr-12">abide by its terms:</span>
<!--l. 143--><p class="indent" >
<!--l. 148--><p class="indent" >

@ -59,21 +59,21 @@ Examples showing the basic use of AMG4PSBLAS are reported in Section~\ref{sec:ex
\begin{tabular}{|l|p{2cm}|p{6.8cm}|}
\hline
\textsc{type} & \textsc{string} & \textsc{default preconditioner} \\ \hline
No preconditioner &\verb|'NONE'|& Considered to use the PSBLAS
No preconditioner &\fortinline|'NONE'|& Considered to use the PSBLAS
Krylov solvers with no preconditioner. \\ \hline
Diagonal & \verb|'DIAG'|, \verb|'JACOBI'|, \verb|'L1-JACOBI'| & Diagonal preconditioner.
Diagonal & \fortinline|'DIAG'|, \fortinline|'JACOBI'|, \fortinline|'L1-JACOBI'| & Diagonal preconditioner.
For any zero diagonal entry of the matrix to be preconditioned,
the corresponding entry of the preconditioner is set to~1.\\ \hline
Gauss-Seidel & \verb|'GS'|, \verb|'L1-GS'| & Hybrid Gauss-Seidel (forward), that is,
Gauss-Seidel & \fortinline|'GS'|, \fortinline|'L1-GS'| & Hybrid Gauss-Seidel (forward), that is,
global block Jacobi with
Gauss-Seidel as local solver.\\ \hline
Symmetrized Gauss-Seidel & \verb|'FBGS'|, \verb|'L1-FBGS'| & Symmetrized hybrid Gauss-Seidel, that is,
Symmetrized Gauss-Seidel & \fortinline|'FBGS'|, \fortinline|'L1-FBGS'| & Symmetrized hybrid Gauss-Seidel, that is,
forward Gauss-Seidel followed by
backward Gauss-Seidel.\\ \hline
Block Jacobi & \verb|'BJAC'|, \verb|'L1-BJAC'| & Block-Jacobi with ILU(0) on the local blocks.\\ \hline
Additive Schwarz & \verb|'AS'| & Additive Schwarz (AS),
Block Jacobi & \fortinline|'BJAC'|, \fortinline|'L1-BJAC'| & Block-Jacobi with ILU(0) on the local blocks.\\ \hline
Additive Schwarz & \fortinline|'AS'| & Additive Schwarz (AS),
with overlap~1 and ILU(0) on the local blocks. \\ \hline
Multilevel &\verb|'ML'| & V-cycle with one hybrid forward Gauss-Seidel
Multilevel &\fortinline|'ML'| & V-cycle with one hybrid forward Gauss-Seidel
(GS) sweep as pre-smoother and one hybrid backward
GS sweep as post-smoother, decoupled smoothed aggregation
as coarsening algorithm, and LU (plus triangular solve)

@ -24,6 +24,12 @@
\usemintedstyle{friendly}
\definecolor{bg}{rgb}{0.95,0.95,0.95}
\usepackage{breakurl}
\ifpdf
\newmintinline[fortinline]{fortran}{}
\else%
\def\fortinline{\lstinline[basicstyle=\ttfamily,language=fortran]}
\fi
%\newboolean{mtc}
%\setboolean{mtc}{true}

@ -22,6 +22,11 @@
%\setboolean{mtc}{true}
\usepackage{microtype}
\usepackage{listings}
\ifpdf
\newmintinline[fortinline]{fortran}{}
\else%
\def\fortinline{\lstinline[basicstyle=\ttfamily,language=fortran]}
\fi
\pdfoutput=0
\relax

Loading…
Cancel
Save