4.1 Examples

The code reported in Figure 1 shows how to set and apply the default multilevel preconditioner available in the real double precision version of AMG4PSBLAS (see Table 1). This preconditioner is chosen by simply specifying ML as the second argument of P%init (a call to P%set is not needed) and is applied with the CG solver provided by PSBLAS (the matrix of the system to be solved is assumed to be positive definite). As previously observed, the modules psb_base_mod, amg_prec_mod and psb_krylov_mod must be used by the example program.

The part of the code concerning the reading and assembling of the sparse matrix and the right-hand side vector, performed through the PSBLAS routines for sparse matrix and vector management, is not reported here for brevity; the statements concerning the deallocation of the PSBLAS data structure are neglected too. The complete code can be found in the example program file amg_dexample_ml.f90, in the directory examples/fileread of the AMG4PSBLAS implementation (see Section 3.5). A sample test problem along with the relevant input data is available in examples/fileread/runs. For details on the use of the PSBLAS routines, see the PSBLAS User’s Guide [16].

The setup and application of the default multilevel preconditioner for the real single precision and the complex, single and double precision, versions are obtained with straightforward modifications of the previous example (see Section 5 for details). If these versions are installed, the corresponding codes are available in examples/fileread/.


  use psb_base_mod  
  use amg_prec_mod  
  use psb_krylov_mod  
... ...  
!  
! sparse matrix  
  type(psb_dspmat_type) :: A  
! sparse matrix descriptor  
  type(psb_desc_type)   :: desc_A  
! preconditioner  
  type(amg_dprec_type)  :: P  
! right-hand side and solution vectors  
  type(psb_d_vect_type) :: b, x  
... ...  
!  
! initialize the parallel environment  
  call psb_init(ctxt)  
  call psb_info(ctxt,iam,np)  
... ...  
!  
! read and assemble the spd matrix A and the right-hand side b  
! using PSBLAS routines for sparse matrix / vector management  
... ...  
!  
! initialize the default multilevel preconditioner, i.e. V-cycle  
! with basic smoothed aggregation, 1 hybrid forward/backward  
! GS sweep as pre/post-smoother and UMFPACK as coarsest-level  
! solver  
  call P%init(’ML’,info)  
!  
! build the preconditioner  
  call P%hierarchy_build(A,desc_A,info)  
  call P%smoothers_build(A,desc_A,info)  
 
!  
! set the solver parameters and the initial guess  
  ... ...  
!  
! solve Ax=b with preconditioned CG  
  call psb_krylov(’CG’,A,P,b,x,tol,desc_A,info)  
  ... ...  
!  
! deallocate the preconditioner  
  call P%free(info)  
!  
! deallocate other data structures  
  ... ...  
!  
! exit the parallel environment  
  call psb_exit(ctxt)  
  stop


Listing 1: setup and application of the default multilevel preconditioner (example 1).

Different versions of the multilevel preconditioner can be obtained by changing the default values of the preconditioner parameters. The code reported in Figure 2 shows how to set a V-cycle preconditioner which applies 1 block-Jacobi sweep as pre- and post-smoother, and solves the coarsest-level system with 8 block-Jacobi sweeps. Note that the ILU(0) factorization (plus triangular solve) is used as local solver for the block-Jacobi sweeps, since this is the default associated with block-Jacobi and set by P%init. Furthermore, specifying block-Jacobi as coarsest-level solver implies that the coarsest-level matrix is distributed among the processes. Figure 3 shows how to set a W-cycle preconditioner using the Coarsening based on Compatible Weighted Matching. It applies 2 hybrid Gauss-Seidel sweeps as pre- and post-smoother, and solves the coarsest-level system with the multifrontal LU factorization implemented in MUMPS. It is specified that the coarsest-level matrix is distributed, since MUMPS can be used on both replicated and distributed matrices, and by default it is used on replicated ones. The code fragments shown in Figures 2 and 3 are included in the example program file amg_dexample_ml.f90 too. DA CORREGGERE NEL CODICE ESEMPIO 3

Finally, Figure 4 shows the setup of a one-level additive Schwarz preconditioner, i.e., RAS with overlap 2. Note also that a Krylov method different from CG must be used to solve the preconditioned system, since the preconditione in nonsymmetric. The corresponding example program is available in the file amg_dexample_1lev.f90.

For all the previous preconditioners, example programs where the sparse matrix and the right-hand side are generated by discretizing a PDE with Dirichlet boundary conditions are also available in the directory examples/pdegen.


... ...  
! build a V-cycle preconditioner with 1 block-Jacobi sweep (with  
! ILU(0) on the blocks) as pre- and post-smoother, and 8  block-Jacobi  
! sweeps (with ILU(0) on the blocks) as coarsest-level solver  
  call P%init(’ML’,info)  
  call P%set(’SMOOTHER_TYPE’,’BJAC’,info)  
  call P%set(’COARSE_SOLVE’,’BJAC’,info)  
  call P%set(’COARSE_SWEEPS’,8,info)  
  call P%hierarchy_build(A,desc_A,info)  
  call P%smoothers_build(A,desc_A,info)  
... ...


Listing 2: setup of a multilevel preconditioner based on the default decoupled coarsening


... ...  
! build a W-cycle preconditioner with 2 hybrid Gauss-Seidel sweeps  
! as pre- and post-smoother, a distributed coarsest  
! matrix, and MUMPS as coarsest-level solver  
  call P%init(’ML’,info)  
  call P%set(’PAR_AGGR_ALG’,’COUPLED’,info)  
  call P%set(’ML_CYCLE’,’WCYCLE’,info)  
  call P%set(’SMOOTHER_TYPE’,’FBGS’,info)  
  call P%set(’SMOOTHER_SWEEPS’,2,info)  
  call P%set(’COARSE_SOLVE’,’MUMPS’,info)  
  call P%set(’COARSE_MAT’,’DIST’,info)  
  call P%hierarchy_build(A,desc_A,info)  
  call P%smoothers_build(A,desc_A,info)  
... ...


Listing 3: setup of a multilevel preconditioner based on the coupled coarsening based on weighted matching


... ...  
! set RAS with overlap 2 and ILU(0) on the local blocks  
  call P%init(’AS’,info)  
  call P%set(’SUB_OVR’,2,info)  
  call P%bld(A,desc_A,info)  
... ...  
! solve Ax=b with preconditioned BiCGSTAB  
  call psb_krylov(’BICGSTAB’,A,P,b,x,tol,desc_A,info)


Listing 4: setup of a one-level Schwarz preconditioner.