You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
amg4psblas/amgprec/impl/solver/amg_z_jac_solver_apply.f90

353 lines
10 KiB
Fortran

!
!
! AMG4PSBLAS version 1.0
! Algebraic Multigrid Package
! based on PSBLAS (Parallel Sparse BLAS version 3.7)
!
! (C) Copyright 2021
!
! Salvatore Filippone
! Pasqua D'Ambra
! Daniela di Serafino
!
! Redistribution and use in source and binary forms, with or without
! modification, are permitted provided that the following conditions
! are met:
! 1. Redistributions of source code must retain the above copyright
! notice, this list of conditions and the following disclaimer.
! 2. Redistributions in binary form must reproduce the above copyright
! notice, this list of conditions, and the following disclaimer in the
! documentation and/or other materials provided with the distribution.
! 3. The name of the AMG4PSBLAS group or the names of its contributors may
! not be used to endorse or promote products derived from this
! software without specific written permission.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AMG4PSBLAS GROUP OR ITS CONTRIBUTORS
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
! POSSIBILITY OF SUCH DAMAGE.
!
!
subroutine amg_z_jac_solver_apply(alpha,sv,x,beta,y,desc_data,trans,&
& work,info,init,initu)
use psb_base_mod
use amg_z_diag_solver
use psb_base_krylov_conv_mod, only : log_conv
use amg_z_jac_solver, amg_protect_name => amg_z_jac_solver_apply
implicit none
type(psb_desc_type), intent(in) :: desc_data
class(amg_z_jac_solver_type), intent(inout) :: sv
complex(psb_dpk_),intent(inout) :: x(:)
complex(psb_dpk_),intent(inout) :: y(:)
complex(psb_dpk_),intent(in) :: alpha,beta
character(len=1),intent(in) :: trans
complex(psb_dpk_),target, intent(inout) :: work(:)
integer(psb_ipk_), intent(out) :: info
character, intent(in), optional :: init
complex(psb_dpk_),intent(inout), optional :: initu(:)
!
integer(psb_ipk_) :: n_row,n_col, sweeps
complex(psb_dpk_), pointer :: aux(:)
type(psb_ctxt_type) :: ctxt
integer(psb_ipk_) :: np, me, i, err_act
character :: trans_, init_
real(psb_dpk_) :: res, resdenum
character(len=20) :: name='z_jac_solver_apply_v'
call psb_erractionsave(err_act)
info = psb_success_
ctxt = desc_data%get_context()
call psb_info(ctxt,me,np)
if (present(init)) then
init_ = psb_toupper(init)
else
init_='Z'
end if
trans_ = psb_toupper(trans)
select case(trans_)
case('N')
case('T','C')
case default
call psb_errpush(psb_err_iarg_invalid_i_,name)
goto 9999
end select
n_row = desc_data%get_local_rows()
n_col = desc_data%get_local_cols()
sweeps = sv%sweeps
if (4*n_col <= size(work)) then
aux => work(:)
else
allocate(aux(4*n_col),stat=info)
if (info /= psb_success_) then
info=psb_err_alloc_request_
call psb_errpush(info,name,&
& i_err=(/4*n_col,izero,izero,izero,izero/),&
& a_err='complex(psb_dpk_)')
goto 9999
end if
endif
if (sweeps >= 0) then
!
! This means we are dealing with a pure Jacobi smoother/solver.
!
associate(tx => aux(1:n_col), ty => aux(n_col+1:2*n_col))
select case (init_)
case('Z')
call inner_mlt(n_row,zone,sv%dv%v%v,x,zzero,ty,trans=trans_)
case('Y')
call psb_geaxpby(zone,x,zzero,tx,desc_data,info)
call psb_geaxpby(zone,y,zzero,ty,desc_data,info)
call psb_spmm(-zone,sv%a,ty,zone,tx,desc_data,info,&
& work=aux,trans=trans_, doswap=.false.)
call inner_mlt(n_row,zone,sv%dv%v%v,tx,zzero,ty,trans=trans_)
case('U')
if (.not.present(initu)) then
call psb_errpush(psb_err_internal_error_,name,&
& a_err='missing initu to smoother_apply')
goto 9999
end if
call psb_geaxpby(zone,x,zzero,tx,desc_data,info)
call psb_geaxpby(zone,initu,zzero,ty,desc_data,info)
call psb_spmm(-zone,sv%a,ty,zone,tx,desc_data,info,&
& work=aux,trans=trans_, doswap=.false.)
call inner_mlt(n_row,zone,sv%dv%v%v,tx,zzero,ty,trans=trans_)
case default
call psb_errpush(psb_err_internal_error_,name,&
& a_err='wrong init to smoother_apply')
goto 9999
end select
do i=1, sweeps-1
!
! Compute Y(j+1) = Y(j)+ D^(-1)*(X-A*Y(j)),
! where is the diagonal and A the matrix.
!
call psb_geaxpby(zone,x,zzero,tx,desc_data,info)
call psb_spmm(-zone,sv%a,ty,zone,tx,desc_data,info,&
& work=aux,trans=trans_, doswap=.false.)
if (info /= psb_success_) exit
call inner_mlt(n_row,zone,sv%dv%v%v,tx,zone,ty,trans=trans_)
if (info /= psb_success_) exit
end do
if (info == psb_success_) call psb_geaxpby(alpha,ty,beta,y,desc_data,info)
if (info /= psb_success_) then
info=psb_err_internal_error_
call psb_errpush(info,name,&
& a_err='subsolve with Jacobi sweeps > 1')
goto 9999
end if
end associate
else
info = psb_err_iarg_neg_
call psb_errpush(info,name,&
& i_err=(/itwo,sweeps,izero,izero,izero/))
goto 9999
end if
if (.not.(4*n_col <= size(work))) then
deallocate(aux)
endif
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
contains
subroutine inner_mlt(n_row,alpha,d,x,beta,y,trans)
implicit none
integer(psb_ipk_),intent(in) :: n_row
complex(psb_dpk_), intent(inout) :: d(:)
complex(psb_dpk_),intent(inout) :: x(:)
complex(psb_dpk_),intent(inout) :: y(:)
complex(psb_dpk_),intent(in) :: alpha,beta
character(len=1),intent(in) :: trans
integer(psb_ipk_) :: i
if (trans_ == 'C') then
if (beta == zzero) then
if (alpha == zzero) then
y(1:n_row) = zzero
else if (alpha == zone) then
do i=1, n_row
y(i) = conjg(d(i)) * x(i)
end do
else if (alpha == -zone) then
do i=1, n_row
y(i) = -conjg(d(i)) * x(i)
end do
else
do i=1, n_row
y(i) = alpha * conjg(d(i)) * x(i)
end do
end if
else if (beta == zone) then
if (alpha == zzero) then
!y(1:n_row) = zzero
else if (alpha == zone) then
do i=1, n_row
y(i) = conjg(d(i)) * x(i) + y(i)
end do
else if (alpha == -zone) then
do i=1, n_row
y(i) = -conjg(d(i)) * x(i) + y(i)
end do
else
do i=1, n_row
y(i) = alpha * conjg(d(i)) * x(i) + y(i)
end do
end if
else if (beta == -zone) then
if (alpha == zzero) then
y(1:n_row) = -y(1:n_row)
else if (alpha == zone) then
do i=1, n_row
y(i) = conjg(d(i)) * x(i) - y(i)
end do
else if (alpha == -zone) then
do i=1, n_row
y(i) = -conjg(d(i)) * x(i) - y(i)
end do
else
do i=1, n_row
y(i) = alpha * conjg(d(i)) * x(i) - y(i)
end do
end if
else
if (alpha == zzero) then
y(1:n_row) = beta *y(1:n_row)
else if (alpha == zone) then
do i=1, n_row
y(i) = conjg(d(i)) * x(i) + beta*y(i)
end do
else if (alpha == -zone) then
do i=1, n_row
y(i) = -conjg(d(i)) * x(i) + beta*y(i)
end do
else
do i=1, n_row
y(i) = alpha * conjg(d(i)) * x(i) + beta*y(i)
end do
end if
end if
else if (trans_ /= 'C') then
if (beta == zzero) then
if (alpha == zzero) then
y(1:n_row) = zzero
else if (alpha == zone) then
do i=1, n_row
y(i) = d(i) * x(i)
end do
else if (alpha == -zone) then
do i=1, n_row
y(i) = -d(i) * x(i)
end do
else
do i=1, n_row
y(i) = alpha * d(i) * x(i)
end do
end if
else if (beta == zone) then
if (alpha == zzero) then
!y(1:n_row) = zzero
else if (alpha == zone) then
do i=1, n_row
y(i) = d(i) * x(i) + y(i)
end do
else if (alpha == -zone) then
do i=1, n_row
y(i) = -d(i) * x(i) + y(i)
end do
else
do i=1, n_row
y(i) = alpha * d(i) * x(i) + y(i)
end do
end if
else if (beta == -zone) then
if (alpha == zzero) then
y(1:n_row) = -y(1:n_row)
else if (alpha == zone) then
do i=1, n_row
y(i) = d(i) * x(i) - y(i)
end do
else if (alpha == -zone) then
do i=1, n_row
y(i) = -d(i) * x(i) - y(i)
end do
else
do i=1, n_row
y(i) = alpha * d(i) * x(i) - y(i)
end do
end if
else
if (alpha == zzero) then
y(1:n_row) = beta *y(1:n_row)
else if (alpha == zone) then
do i=1, n_row
y(i) = d(i) * x(i) + beta*y(i)
end do
else if (alpha == -zone) then
do i=1, n_row
y(i) = -d(i) * x(i) + beta*y(i)
end do
else
do i=1, n_row
y(i) = alpha * d(i) * x(i) + beta*y(i)
end do
end if
end if
end if
end subroutine inner_mlt
end subroutine amg_z_jac_solver_apply