amg4psblas/mlprec/impl/mld_d_dec_map_bld.f90

323 lines
9.5 KiB
Fortran

!
!
! MLD2P4 version 2.1
! MultiLevel Domain Decomposition Parallel Preconditioners Package
! based on PSBLAS (Parallel Sparse BLAS version 3.5)
!
! (C) Copyright 2008, 2010, 2012, 2015, 2017
!
! Salvatore Filippone Cranfield University, UK
! Pasqua D'Ambra IAC-CNR, Naples, IT
! Daniela di Serafino University of Campania "L. Vanvitelli", Caserta, IT
!
! Redistribution and use in source and binary forms, with or without
! modification, are permitted provided that the following conditions
! are met:
! 1. Redistributions of source code must retain the above copyright
! notice, this list of conditions and the following disclaimer.
! 2. Redistributions in binary form must reproduce the above copyright
! notice, this list of conditions, and the following disclaimer in the
! documentation and/or other materials provided with the distribution.
! 3. The name of the MLD2P4 group or the names of its contributors may
! not be used to endorse or promote products derived from this
! software without specific written permission.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
! POSSIBILITY OF SUCH DAMAGE.
!
!
!
! File: mld_d_dec_map__bld.f90
!
! Subroutine: mld_d_dec_map_bld
! Version: real
!
! This routine builds the tentative prolongator based on the
! decoupled aggregation algorithm presented in
!
! M. Brezina and P. Vanek, A black-box iterative solver based on a
! two-level Schwarz method, Computing, 63 (1999), 233-263.
! P. D'Ambra, D. di Serafino and S. Filippone, On the development of
! PSBLAS-based parallel two-level Schwarz preconditioners, Appl. Num. Math.
! 57 (2007), 1181-1196.
!
! Note: upon exit
!
! Arguments:
! a - type(psb_dspmat_type).
! The sparse matrix structure containing the local part of the
! matrix to be preconditioned.
! desc_a - type(psb_desc_type), input.
! The communication descriptor of a.
! p - type(mld_dprec_type), input/output.
! The preconditioner data structure; upon exit it contains
! the multilevel hierarchy of prolongators, restrictors
! and coarse matrices.
! info - integer, output.
! Error code.
!
!
!
subroutine mld_d_dec_map_bld(iorder,theta,a,desc_a,nlaggr,ilaggr,info)
use psb_base_mod
use mld_base_prec_type
use mld_d_inner_mod, mld_protect_name => mld_d_dec_map_bld
implicit none
! Arguments
integer(psb_ipk_), intent(in) :: iorder
type(psb_dspmat_type), intent(in) :: a
type(psb_desc_type), intent(in) :: desc_a
real(psb_dpk_), intent(in) :: theta
integer(psb_ipk_), allocatable, intent(out) :: ilaggr(:),nlaggr(:)
integer(psb_ipk_), intent(out) :: info
! Local variables
integer(psb_ipk_), allocatable :: ils(:), neigh(:), irow(:), icol(:),&
& ideg(:), idxs(:), tmpaggr(:)
real(psb_dpk_), allocatable :: val(:), diag(:)
integer(psb_ipk_) :: icnt,nlp,k,n,ia,isz,nr, naggr,i,j,m, nz, ilg, ii, ip
type(psb_d_csr_sparse_mat) :: acsr
real(psb_dpk_) :: cpling, tcl
logical :: disjoint
integer(psb_ipk_) :: debug_level, debug_unit,err_act
integer(psb_ipk_) :: ictxt,np,me
integer(psb_ipk_) :: nrow, ncol, n_ne
character(len=20) :: name, ch_err
if (psb_get_errstatus() /= 0) return
info=psb_success_
name = 'mld_dec_map_bld'
call psb_erractionsave(err_act)
debug_unit = psb_get_debug_unit()
debug_level = psb_get_debug_level()
!
ictxt=desc_a%get_context()
call psb_info(ictxt,me,np)
nrow = desc_a%get_local_rows()
ncol = desc_a%get_local_cols()
nr = a%get_nrows()
allocate(ilaggr(nr),neigh(nr),ideg(nr),idxs(nr),stat=info)
if(info /= psb_success_) then
info=psb_err_alloc_request_
call psb_errpush(info,name,i_err=(/2*nr,izero,izero,izero,izero/),&
& a_err='integer')
goto 9999
end if
diag = a%get_diag(info)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
call psb_errpush(info,name,a_err='psb_sp_getdiag')
goto 9999
end if
if (iorder == mld_aggr_ord_nat_) then
do i=1, nr
ilaggr(i) = -(nr+1)
idxs(i) = i
end do
else
call a%cp_to(acsr)
do i=1, nr
ilaggr(i) = -(nr+1)
ideg(i) = acsr%irp(i+1) - acsr%irp(i)
end do
call acsr%free()
call psb_msort(ideg,ix=idxs,dir=psb_sort_down_)
end if
!
! Phase one: Start with disjoint groups.
!
naggr = 0
icnt = 0
step1: do ii=1, nr
i = idxs(ii)
if (ilaggr(i) == -(nr+1)) then
call a%csget(i,i,nz,irow,icol,val,info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
call psb_errpush(info,name,a_err='csget')
goto 9999
end if
!
! Build the set of all strongly coupled nodes
!
ip = 0
do k=1, nz
j = icol(k)
if ((1<=j).and.(j<=nr)) then
if (abs(val(k)) > theta*sqrt(abs(diag(i)*diag(j)))) then
ip = ip + 1
icol(ip) = icol(k)
end if
end if
enddo
!
! If the whole strongly coupled neighborhood of I is
! as yet unconnected, turn it into the next aggregate.
! Same if ip==0 (in which case, neighborhood only
! contains I even if it does not look from matrix)
!
disjoint = all(ilaggr(icol(1:ip)) == -(nr+1)).or.(ip==0)
if (disjoint) then
icnt = icnt + 1
naggr = naggr + 1
do k=1, ip
ilaggr(icol(k)) = naggr
end do
ilaggr(i) = naggr
end if
endif
enddo step1
if (debug_level >= psb_debug_outer_) then
write(debug_unit,*) me,' ',trim(name),&
& ' Check 1:',count(ilaggr == -(nr+1))
end if
!
! Phase two: join the neighbours
!
tmpaggr = ilaggr
step2: do ii=1,nr
i = idxs(ii)
if (ilaggr(i) == -(nr+1)) then
call a%csget(i,i,nz,irow,icol,val,info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
call psb_errpush(info,name,a_err='psb_sp_getrow')
goto 9999
end if
!
! Find the most strongly connected neighbour that is
! already aggregated, if any, and join its aggregate
!
cpling = dzero
ip = 0
do k=1, nz
j = icol(k)
if ((1<=j).and.(j<=nr)) then
if ((abs(val(k)) > theta*sqrt(abs(diag(i)*diag(j))))&
& .and. (tmpaggr(j) > 0).and. (abs(val(k)) > cpling)) then
ip = k
cpling = abs(val(k))
end if
end if
enddo
if (ip > 0) then
ilaggr(i) = ilaggr(icol(ip))
end if
end if
end do step2
!
! Phase three: sweep over leftovers, if any
!
step3: do ii=1,nr
i = idxs(ii)
if (ilaggr(i) < 0) then
call a%csget(i,i,nz,irow,icol,val,info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
call psb_errpush(info,name,a_err='psb_sp_getrow')
goto 9999
end if
!
! Find its strongly connected neighbourhood not
! already aggregated, and make it into a new aggregate.
!
cpling = dzero
ip = 0
do k=1, nz
j = icol(k)
if ((1<=j).and.(j<=nr)) then
if ((abs(val(k)) > theta*sqrt(abs(diag(i)*diag(j))))&
& .and. (ilaggr(j) < 0)) then
ip = ip + 1
icol(ip) = icol(k)
end if
end if
enddo
if (ip > 0) then
icnt = icnt + 1
naggr = naggr + 1
ilaggr(i) = naggr
do k=1, ip
ilaggr(icol(k)) = naggr
end do
else
!
! This should not happen: we did not even connect with ourselves.
! Create an isolate anyway.
!
naggr = naggr + 1
ilaggr(i) = naggr
end if
end if
end do step3
if (count(ilaggr<0) >0) then
info=psb_err_internal_error_
call psb_errpush(info,name,a_err='Fatal error: some leftovers')
goto 9999
endif
if (naggr > ncol) then
write(0,*) name,'Error : naggr > ncol',naggr,ncol
info=psb_err_internal_error_
call psb_errpush(info,name,a_err='Fatal error: naggr>ncol')
goto 9999
end if
call psb_realloc(ncol,ilaggr,info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='psb_realloc'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
allocate(nlaggr(np),stat=info)
if (info /= psb_success_) then
info=psb_err_alloc_request_
call psb_errpush(info,name,i_err=(/np,izero,izero,izero,izero/),&
& a_err='integer')
goto 9999
end if
nlaggr(:) = 0
nlaggr(me+1) = naggr
call psb_sum(ictxt,nlaggr(1:np))
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
end subroutine mld_d_dec_map_bld