You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
169 lines
7.2 KiB
HTML
169 lines
7.2 KiB
HTML
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
|
|
"http://www.w3.org/TR/html4/loose.dtd">
|
|
<html >
|
|
<head><title>Abstract</title>
|
|
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
|
|
<meta name="generator" content="TeX4ht (https://tug.org/tex4ht/)">
|
|
<meta name="originator" content="TeX4ht (https://tug.org/tex4ht/)">
|
|
<!-- html,3 -->
|
|
<meta name="src" content="userhtml.tex">
|
|
<link rel="stylesheet" type="text/css" href="userhtml.css">
|
|
</head><body
|
|
>
|
|
<!--l. 1--><div class="crosslinks"><p class="noindent"><span
|
|
class="cmr-12">[</span><a
|
|
href="userhtmlli2.html" ><span
|
|
class="cmr-12">next</span></a><span
|
|
class="cmr-12">] [</span><a
|
|
href="#tailuserhtmlli1.html"><span
|
|
class="cmr-12">tail</span></a><span
|
|
class="cmr-12">] [</span><a
|
|
href="userhtml.html#userhtmlli1.html" ><span
|
|
class="cmr-12">up</span></a><span
|
|
class="cmr-12">] </span></p></div>
|
|
<h3 class="likesectionHead"><a
|
|
id="x2-1000"></a><span
|
|
class="cmr-12">Abstract</span></h3>
|
|
<!--l. 7--><p class="noindent" ><span
|
|
class="cmcsc-10x-x-120">AMG4PSBLAS (A<span
|
|
class="small-caps">l</span><span
|
|
class="small-caps">g</span><span
|
|
class="small-caps">e</span><span
|
|
class="small-caps">b</span><span
|
|
class="small-caps">r</span><span
|
|
class="small-caps">a</span><span
|
|
class="small-caps">i</span><span
|
|
class="small-caps">c</span> M<span
|
|
class="small-caps">u</span><span
|
|
class="small-caps">l</span><span
|
|
class="small-caps">t</span><span
|
|
class="small-caps">i</span>G<span
|
|
class="small-caps">r</span><span
|
|
class="small-caps">i</span><span
|
|
class="small-caps">d</span> P<span
|
|
class="small-caps">r</span><span
|
|
class="small-caps">e</span><span
|
|
class="small-caps">c</span><span
|
|
class="small-caps">o</span><span
|
|
class="small-caps">n</span><span
|
|
class="small-caps">d</span><span
|
|
class="small-caps">i</span><span
|
|
class="small-caps">t</span><span
|
|
class="small-caps">i</span><span
|
|
class="small-caps">o</span><span
|
|
class="small-caps">n</span><span
|
|
class="small-caps">e</span><span
|
|
class="small-caps">r</span><span
|
|
class="small-caps">s</span> P<span
|
|
class="small-caps">a</span><span
|
|
class="small-caps">c</span><span
|
|
class="small-caps">k</span><span
|
|
class="small-caps">a</span><span
|
|
class="small-caps">g</span><span
|
|
class="small-caps">e</span> <span
|
|
class="small-caps">b</span><span
|
|
class="small-caps">a</span><span
|
|
class="small-caps">s</span><span
|
|
class="small-caps">e</span><span
|
|
class="small-caps">d</span> <span
|
|
class="small-caps">o</span><span
|
|
class="small-caps">n</span></span>
|
|
<span
|
|
class="cmcsc-10x-x-120">PSBLAS</span><span
|
|
class="cmr-12">) is a package of parallel algebraic multilevel preconditioners included in the</span>
|
|
<span
|
|
class="cmr-12">PSCToolkit (Parallel Sparse Computation Toolkit) software framework. It is a progress</span>
|
|
<span
|
|
class="cmr-12">of a software development project started in 2007, named MLD2P4, which originally</span>
|
|
<span
|
|
class="cmr-12">implemented a multilevel version of some domain decomposition preconditioners of</span>
|
|
<span
|
|
class="cmr-12">additive-Schwarz type, and was based on a parallel decoupled version of the well known</span>
|
|
<span
|
|
class="cmr-12">smoothed aggregation method to generate the multilevel hierarchy of coarser</span>
|
|
<span
|
|
class="cmr-12">matrices. In the last years, within the context of the EU-H2020 EoCoE project</span>
|
|
<span
|
|
class="cmr-12">(Energy Oriented Center of Excellence), the package was extended for including</span>
|
|
<span
|
|
class="cmr-12">new algorithms and functionalities for the setup and application new AMG</span>
|
|
<span
|
|
class="cmr-12">preconditioners with the final aims of improving efficiency and scalability when tens of</span>
|
|
<span
|
|
class="cmr-12">thousands cores are used, and of boosting reliability in dealing with general</span>
|
|
<span
|
|
class="cmr-12">symmetric positive definite linear systems. Due to the significant number</span>
|
|
<span
|
|
class="cmr-12">of changes and the increase in scope, we decided to rename the package as</span>
|
|
<span
|
|
class="cmr-12">AMG4PSBLAS.</span>
|
|
<!--l. 16--><p class="indent" > <span
|
|
class="cmr-12">AMG4PSBLAS has been designed to provide scalable and easy-to-use</span>
|
|
<span
|
|
class="cmr-12">preconditioners in the context of the PSBLAS (Parallel Sparse Basic Linear Algebra</span>
|
|
<span
|
|
class="cmr-12">Subprograms) computational framework and can be used in conjuction with the Krylov</span>
|
|
<span
|
|
class="cmr-12">solvers available in this framework. Our package is based on a completely</span>
|
|
<span
|
|
class="cmr-12">algebraic approach; therefore users level interfaces assume that the system matrix</span>
|
|
<span
|
|
class="cmr-12">and preconditioners are represented as PSBLAS distributed sparse matrices.</span>
|
|
<span
|
|
class="cmr-12">AMG4PSBLAS enables the user to easily specify different features of an algebraic</span>
|
|
<span
|
|
class="cmr-12">multilevel preconditioner, thus allowing to experiment with different preconditioners for</span>
|
|
|
|
|
|
|
|
<span
|
|
class="cmr-12">the problem and parallel computers at hand.</span>
|
|
<!--l. 27--><p class="indent" > <span
|
|
class="cmr-12">The package employs object-oriented design techniques in Fortran</span><span
|
|
class="cmr-12"> 2003, with</span>
|
|
<span
|
|
class="cmr-12">interfaces to additional third party libraries such as MUMPS, UMFPACK, SuperLU,</span>
|
|
<span
|
|
class="cmr-12">and SuperLU</span><span
|
|
class="cmr-12">_Dist, which can be exploited in building multilevel preconditioners. The</span>
|
|
<span
|
|
class="cmr-12">parallel implementation is based on a Single Program Multiple Data (SPMD)</span>
|
|
<span
|
|
class="cmr-12">paradigm; the inter-process communication is based on MPI and is managed mainly</span>
|
|
<span
|
|
class="cmr-12">through PSBLAS.</span>
|
|
<!--l. 35--><p class="indent" > <span
|
|
class="cmr-12">This guide provides a brief description of the functionalities and the user interface</span>
|
|
<span
|
|
class="cmr-12">of AMG4PSBLAS.</span>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<!--l. 127--><p class="indent" >
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<!--l. 133--><div class="crosslinks"><p class="noindent"><span
|
|
class="cmr-12">[</span><a
|
|
href="userhtmlli2.html" ><span
|
|
class="cmr-12">next</span></a><span
|
|
class="cmr-12">] [</span><a
|
|
href="userhtmlli1.html" ><span
|
|
class="cmr-12">front</span></a><span
|
|
class="cmr-12">] [</span><a
|
|
href="userhtml.html#userhtmlli1.html" ><span
|
|
class="cmr-12">up</span></a><span
|
|
class="cmr-12">] </span></p></div>
|
|
<!--l. 133--><p class="indent" > <a
|
|
id="tailuserhtmlli1.html"></a>
|
|
</body></html>
|