You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
amg4psblas/samples/advanced/pdegen/amg_d_pde3d_gauss_mod.f90

102 lines
3.7 KiB
Fortran

!
!
! AMG4PSBLAS version 1.0
! Algebraic Multigrid Package
! based on PSBLAS (Parallel Sparse BLAS version 3.7)
!
! (C) Copyright 2021
!
! Salvatore Filippone
! Pasqua D'Ambra
! Fabio Durastante
!
! Redistribution and use in source and binary forms, with or without
! modification, are permitted provided that the following conditions
! are met:
! 1. Redistributions of source code must retain the above copyright
! notice, this list of conditions and the following disclaimer.
! 2. Redistributions in binary form must reproduce the above copyright
! notice, this list of conditions, and the following disclaimer in the
! documentation and/or other materials provided with the distribution.
! 3. The name of the AMG4PSBLAS group or the names of its contributors may
! not be used to endorse or promote products derived from this
! software without specific written permission.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AMG4PSBLAS GROUP OR ITS CONTRIBUTORS
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
! POSSIBILITY OF SUCH DAMAGE.
!
module amg_d_pde3d_gauss_mod
use psb_base_mod, only : psb_dpk_, done, dzero
real(psb_dpk_), save, private :: epsilon=done/80
contains
subroutine pde_set_parm(dat)
real(psb_dpk_), intent(in) :: dat
epsilon = dat
end subroutine pde_set_parm
!
! functions parametrizing the differential equation
!
function b1_gauss(x,y,z)
implicit none
real(psb_dpk_) :: b1_gauss
real(psb_dpk_), intent(in) :: x,y,z
b1_gauss=done/sqrt(3.0_psb_dpk_)-2*x*exp(-(x**2+y**2+z**2))
end function b1_gauss
function b2_gauss(x,y,z)
implicit none
real(psb_dpk_) :: b2_gauss
real(psb_dpk_), intent(in) :: x,y,z
b2_gauss=done/sqrt(3.0_psb_dpk_)-2*y*exp(-(x**2+y**2+z**2))
end function b2_gauss
function b3_gauss(x,y,z)
implicit none
real(psb_dpk_) :: b3_gauss
real(psb_dpk_), intent(in) :: x,y,z
b3_gauss=done/sqrt(3.0_psb_dpk_)-2*z*exp(-(x**2+y**2+z**2))
end function b3_gauss
function c_gauss(x,y,z)
implicit none
real(psb_dpk_) :: c_gauss
real(psb_dpk_), intent(in) :: x,y,z
c_gauss=dzero
end function c_gauss
function a1_gauss(x,y,z)
implicit none
real(psb_dpk_) :: a1_gauss
real(psb_dpk_), intent(in) :: x,y,z
a1_gauss=epsilon*exp(-(x**2+y**2+z**2))
end function a1_gauss
function a2_gauss(x,y,z)
implicit none
real(psb_dpk_) :: a2_gauss
real(psb_dpk_), intent(in) :: x,y,z
a2_gauss=epsilon*exp(-(x**2+y**2+z**2))
end function a2_gauss
function a3_gauss(x,y,z)
implicit none
real(psb_dpk_) :: a3_gauss
real(psb_dpk_), intent(in) :: x,y,z
a3_gauss=epsilon*exp(-(x**2+y**2+z**2))
end function a3_gauss
function g_gauss(x,y,z)
implicit none
real(psb_dpk_) :: g_gauss
real(psb_dpk_), intent(in) :: x,y,z
g_gauss = dzero
if (x == done) then
g_gauss = done
else if (x == dzero) then
g_gauss = done
end if
end function g_gauss
end module amg_d_pde3d_gauss_mod