amg4psblas/examples/pdegen/mld_dexample_ml.f90

656 lines
20 KiB
Fortran

!!$
!!$
!!$ MLD2P4 version 1.1
!!$ MultiLevel Domain Decomposition Parallel Preconditioners Package
!!$ based on PSBLAS (Parallel Sparse BLAS version 2.3.1)
!!$
!!$ (C) Copyright 2008,2009
!!$
!!$ Salvatore Filippone University of Rome Tor Vergata
!!$ Alfredo Buttari University of Rome Tor Vergata
!!$ Pasqua D'Ambra ICAR-CNR, Naples
!!$ Daniela di Serafino Second University of Naples
!!$
!!$ Redistribution and use in source and binary forms, with or without
!!$ modification, are permitted provided that the following conditions
!!$ are met:
!!$ 1. Redistributions of source code must retain the above copyright
!!$ notice, this list of conditions and the following disclaimer.
!!$ 2. Redistributions in binary form must reproduce the above copyright
!!$ notice, this list of conditions, and the following disclaimer in the
!!$ documentation and/or other materials provided with the distribution.
!!$ 3. The name of the MLD2P4 group or the names of its contributors may
!!$ not be used to endorse or promote products derived from this
!!$ software without specific written permission.
!!$
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
!!$ POSSIBILITY OF SUCH DAMAGE.
!!$
!!$
! File: mld_dexample_ml.f90
!
! This sample program solves a linear system obtained by discretizing a
! PDE with Dirichlet BCs. The solver is BiCGStab coupled with one of the
! following multi-level preconditioner, as explained in Section 6.1 of
! the MLD2P4 User's and Reference Guide:
! - choice = 1, default multi-level Schwarz preconditioner (Sec. 6.1, Fig. 2)
! - choice = 2, hybrid three-level Schwarz preconditioner (Sec. 6.1, Fig. 3)
! - choice = 3, additive three-level Schwarz preconditioner (Sec. 6.1, Fig. 4)
!
! The PDE is a general second order equation in 3d
!
! b1 dd(u) b2 dd(u) b3 dd(u) a1 d(u) a2 d(u) a3 d(u)
! - ------ - ------ - ------ - ----- - ------ - ------ + a4 u = 0
! dxdx dydy dzdz dx dy dz
!
! with Dirichlet boundary conditions, on the unit cube 0<=x,y,z<=1.
!
! Example taken from:
! C.T.Kelley
! Iterative Methods for Linear and Nonlinear Equations
! SIAM 1995
!
! In this sample program the index space of the discretized
! computational domain is first numbered sequentially in a standard way,
! then the corresponding vector is distributed according to a BLOCK
! data distribution.
!
! Boundary conditions are set in a very simple way, by adding
! equations of the form
!
! u(x,y) = exp(-x^2-y^2-z^2)
!
! Note that if a1=a2=a3=a4=0., the PDE is the well-known Laplace equation.
!
program mld_dexample_ml
use psb_base_mod
use mld_prec_mod
use psb_krylov_mod
use psb_util_mod
use data_input
implicit none
! input parameters
! sparse matrices
type(psb_dspmat_type) :: A
! sparse matrices descriptor
type(psb_desc_type):: desc_A
! preconditioner
type(mld_dprec_type) :: P
! right-hand side, solution and residual vectors
real(psb_dpk_), allocatable , save :: b(:), x(:), r(:)
! solver and preconditioner parameters
real(psb_dpk_) :: tol, err
integer :: itmax, iter, istop
integer :: nlev
! parallel environment parameters
integer :: ictxt, iam, np
! other variables
integer :: choice
integer :: i,info,j
integer(psb_long_int_k_) :: amatsize, precsize, descsize
integer :: idim, ierr, ircode
real(psb_dpk_) :: t1, t2, tprec, resmx, resmxp
character(len=20) :: name
! initialize the parallel environment
call psb_init(ictxt)
call psb_info(ictxt,iam,np)
if (iam < 0) then
! This should not happen, but just in case
call psb_exit(ictxt)
stop
endif
name='mld_dexample_ml'
if(psb_get_errstatus() /= 0) goto 9999
info=0
call psb_set_errverbosity(2)
! get parameters
call get_parms(ictxt,choice,idim,itmax,tol)
! allocate and fill in the coefficient matrix, rhs and initial guess
call psb_barrier(ictxt)
t1 = psb_wtime()
call create_matrix(idim,a,b,x,desc_a,ictxt,info)
call psb_barrier(ictxt)
t2 = psb_wtime() - t1
if(info /= 0) then
info=4010
call psb_errpush(info,name)
goto 9999
end if
if (iam == psb_root_) write(*,'("Overall matrix creation time : ",es12.5)')t2
if (iam == psb_root_) write(*,'(" ")')
select case(choice)
case(1)
! initialize the default multi-level preconditioner, i.e. hybrid
! Schwarz, using RAS (with overlap 1 and ILU(0) on the blocks)
! as post-smoother and 4 block-Jacobi sweeps (with UMFPACK LU
! on the blocks) as distributed coarse-level solver
call mld_precinit(P,'ML',info)
case(2)
! set a three-level hybrid Schwarz preconditioner, which uses
! block Jacobi (with ILU(0) on the blocks) as post-smoother,
! a coarsest matrix replicated on the processors, and the
! LU factorization from UMFPACK as coarse-level solver
call mld_precinit(P,'ML',info,nlev=3)
call mld_precset(P,mld_smoother_type_,'BJAC',info)
call mld_precset(P,mld_coarse_mat_,'REPL',info)
call mld_precset(P,mld_coarse_solve_,'UMF',info)
case(3)
! set a three-level additive Schwarz preconditioner, which uses
! RAS (with overlap 1 and ILU(0) on the blocks) as pre- and
! post-smoother, and 5 block-Jacobi sweeps (with UMFPACK LU
! on the blocks) as distributed coarsest-level solver
call mld_precinit(P,'ML',info,nlev=3)
call mld_precset(P,mld_ml_type_,'ADD',info)
call mld_precset(P,mld_smoother_pos_,'TWOSIDE',info)
call mld_precset(P,mld_coarse_sweeps_,5,info)
end select
! build the preconditioner
call psb_barrier(ictxt)
t1 = psb_wtime()
call mld_precbld(A,desc_A,P,info)
tprec = psb_wtime()-t1
call psb_amx(ictxt, tprec)
if (info /= 0) then
call psb_errpush(4010,name,a_err='psb_precbld')
goto 9999
end if
! set the solver parameters and the initial guess
call psb_geall(x,desc_A,info)
x(:) =0.0
call psb_geasb(x,desc_A,info)
! solve Ax=b with preconditioned BiCGSTAB
call psb_barrier(ictxt)
t1 = psb_wtime()
call psb_krylov('BICGSTAB',A,P,b,x,tol,desc_A,info,itmax,iter,err,itrace=1,istop=2)
t2 = psb_wtime() - t1
call psb_amx(ictxt,t2)
call psb_geall(r,desc_A,info)
r(:) =0.0
call psb_geasb(r,desc_A,info)
call psb_geaxpby(done,b,dzero,r,desc_A,info)
call psb_spmm(-done,A,x,done,r,desc_A,info)
call psb_genrm2s(resmx,r,desc_A,info)
call psb_geamaxs(resmxp,r,desc_A,info)
amatsize = psb_sizeof(A)
descsize = psb_sizeof(desc_A)
precsize = mld_sizeof(P)
call psb_sum(ictxt,amatsize)
call psb_sum(ictxt,descsize)
call psb_sum(ictxt,precsize)
call mld_precdescr(P,info)
if (iam==psb_root_) then
write(*,'(" ")')
write(*,'("Matrix from PDE example")')
write(*,'("Computed solution on ",i8," processors")')np
write(*,'("Iterations to convergence : ",i6)')iter
write(*,'("Error estimate on exit : ",es12.5)')err
write(*,'("Time to build prec. : ",es12.5)')tprec
write(*,'("Time to solve system : ",es12.5)')t2
write(*,'("Time per iteration : ",es12.5)')t2/(iter)
write(*,'("Total time : ",es12.5)')t2+tprec
write(*,'("Residual 2-norm : ",es12.5)')resmx
write(*,'("Residual inf-norm : ",es12.5)')resmxp
write(*,'("Total memory occupation for A : ",i12)')amatsize
write(*,'("Total memory occupation for DESC_A : ",i12)')descsize
write(*,'("Total memory occupation for PREC : ",i12)')precsize
end if
call psb_gefree(b, desc_A,info)
call psb_gefree(x, desc_A,info)
call psb_spfree(A, desc_A,info)
call mld_precfree(P,info)
call psb_cdfree(desc_A,info)
9999 continue
if(info /= 0) then
call psb_error(ictxt)
end if
call psb_exit(ictxt)
stop
contains
!
! get parameters from standard input
!
subroutine get_parms(ictxt,choice,idim,itmax,tol)
use psb_base_mod
implicit none
integer :: choice, idim, ictxt, itmax
real(psb_dpk_) :: tol
integer :: iam, np
call psb_info(ictxt,iam,np)
if (iam==psb_root_) then
! read input parameters
call read_data(choice,5)
call read_data(idim,5)
call read_data(itmax,5)
call read_data(tol,5)
end if
call psb_bcast(ictxt,choice)
call psb_bcast(ictxt,idim)
call psb_bcast(ictxt,itmax)
call psb_bcast(ictxt,tol)
end subroutine get_parms
!
! subroutine to allocate and fill in the coefficient matrix and
! the rhs
!
subroutine create_matrix(idim,a,b,xv,desc_a,ictxt,info)
!
! Discretize the partial diferential equation
!
! b1 dd(u) b2 dd(u) b3 dd(u) a1 d(u) a2 d(u) a3 d(u)
! - ------ - ------ - ------ - ----- - ------ - ------ + a4 u = 0
! dxdx dydy dzdz dx dy dz
!
! with Dirichlet boundary conditions, on the unit cube 0<=x,y,z<=1.
!
! Boundary conditions are set in a very simple way, by adding
! equations of the form
!
! u(x,y) = exp(-x^2-y^2-z^2)
!
! Note that if a1=a2=a3=a4=0., the PDE is the well-known Laplace equation.
!
use psb_base_mod
implicit none
integer :: idim
integer, parameter :: nb=20
real(psb_dpk_), allocatable :: b(:),xv(:)
type(psb_desc_type) :: desc_a
integer :: ictxt, info
! local variables
type(psb_dspmat_type) :: a
real(psb_dpk_) :: zt(nb),glob_x,glob_y,glob_z
integer :: m,n,nnz,glob_row,nlr,i,ii,ib,k,ipoints
integer :: x,y,z,ia,indx_owner
integer :: np, iam, nr, nt
integer :: element
integer, allocatable :: irow(:),icol(:),myidx(:)
real(psb_dpk_), allocatable :: val(:)
! deltah dimension of each grid cell
! deltat discretization time
real(psb_dpk_) :: deltah
real(psb_dpk_),parameter :: rhs=0.d0,one=1.d0,zero=0.d0
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen
real(psb_dpk_) :: a1, a2, a3, a4, b1, b2, b3
external :: a1, a2, a3, a4, b1, b2, b3
integer :: err_act
character(len=20) :: name
info = 0
name = 'create_matrix'
call psb_erractionsave(err_act)
call psb_info(ictxt, iam, np)
deltah = 1.d0/(idim-1)
! initialize array descriptor and sparse matrix storage; provide an
! estimate of the number of non zeroes
ipoints=idim-2
m = ipoints*ipoints*ipoints
n = m
nnz = ((n*9)/(np))
if(iam == psb_root_) write(0,'("Generating Matrix (size=",i0,")...")')n
!
! Using a simple BLOCK distribution.
!
nt = (m+np-1)/np
nr = max(0,min(nt,m-(iam*nt)))
nt = nr
call psb_sum(ictxt,nt)
if (nt /= m) write(0,*) iam, 'Initialization error ',nr,nt,m
call psb_barrier(ictxt)
t0 = psb_wtime()
call psb_cdall(ictxt,desc_a,info,nl=nr)
if (info == 0) call psb_spall(a,desc_a,info,nnz=nnz)
! define rhs from boundary conditions; also build initial guess
if (info == 0) call psb_geall(b,desc_a,info)
if (info == 0) call psb_geall(xv,desc_a,info)
nlr = psb_cd_get_local_rows(desc_a)
call psb_barrier(ictxt)
talc = psb_wtime()-t0
if (info /= 0) then
info=4010
call psb_errpush(info,name)
goto 9999
end if
! we build an auxiliary matrix consisting of one row at a
! time; just a small matrix. might be extended to generate
! a bunch of rows per call.
!
allocate(val(20*nb),irow(20*nb),&
&icol(20*nb),myidx(nlr),stat=info)
if (info /= 0 ) then
info=4000
call psb_errpush(info,name)
goto 9999
endif
do i=1,nlr
myidx(i) = i
end do
call psb_loc_to_glob(myidx,desc_a,info)
! loop over rows belonging to current process in a block
! distribution.
call psb_barrier(ictxt)
t1 = psb_wtime()
do ii=1, nlr,nb
ib = min(nb,nlr-ii+1)
element = 1
do k=1,ib
i=ii+k-1
! local matrix pointer
glob_row=myidx(i)
! compute gridpoint coordinates
if (mod(glob_row,ipoints*ipoints) == 0) then
x = glob_row/(ipoints*ipoints)
else
x = glob_row/(ipoints*ipoints)+1
endif
if (mod((glob_row-(x-1)*ipoints*ipoints),ipoints) == 0) then
y = (glob_row-(x-1)*ipoints*ipoints)/ipoints
else
y = (glob_row-(x-1)*ipoints*ipoints)/ipoints+1
endif
z = glob_row-(x-1)*ipoints*ipoints-(y-1)*ipoints
! glob_x, glob_y, glob_x coordinates
glob_x=x*deltah
glob_y=y*deltah
glob_z=z*deltah
! check on boundary points
zt(k) = 0.d0
! internal point: build discretization
!
! term depending on (x-1,y,z)
!
if (x==1) then
val(element)=-b1(glob_x,glob_y,glob_z)&
& -a1(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
zt(k) = exp(-glob_y**2-glob_z**2)*(-val(element))
else
val(element)=-b1(glob_x,glob_y,glob_z)&
& -a1(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
icol(element) = (x-2)*ipoints*ipoints+(y-1)*ipoints+(z)
irow(element) = glob_row
element = element+1
endif
! term depending on (x,y-1,z)
if (y==1) then
val(element)=-b2(glob_x,glob_y,glob_z)&
& -a2(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
zt(k) = exp(-glob_x**2-glob_z**2)*(-val(element))
else
val(element)=-b2(glob_x,glob_y,glob_z)&
& -a2(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
icol(element) = (x-1)*ipoints*ipoints+(y-2)*ipoints+(z)
irow(element) = glob_row
element = element+1
endif
! term depending on (x,y,z-1)
if (z==1) then
val(element)=-b3(glob_x,glob_y,glob_z)&
& -a3(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
zt(k) = exp(-glob_x**2-glob_y**2)*(-val(element))
else
val(element)=-b3(glob_x,glob_y,glob_z)&
& -a3(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
icol(element) = (x-1)*ipoints*ipoints+(y-1)*ipoints+(z-1)
irow(element) = glob_row
element = element+1
endif
! term depending on (x,y,z)
val(element)=2*b1(glob_x,glob_y,glob_z)&
& +2*b2(glob_x,glob_y,glob_z)&
& +2*b3(glob_x,glob_y,glob_z)&
& +a1(glob_x,glob_y,glob_z)&
& +a2(glob_x,glob_y,glob_z)&
& +a3(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
icol(element) = (x-1)*ipoints*ipoints+(y-1)*ipoints+(z)
irow(element) = glob_row
element = element+1
! term depending on (x,y,z+1)
if (z==ipoints) then
val(element)=-b1(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
zt(k) = exp(-glob_x**2-glob_y**2)*exp(-glob_z)*(-val(element))
else
val(element)=-b1(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
icol(element) = (x-1)*ipoints*ipoints+(y-1)*ipoints+(z+1)
irow(element) = glob_row
element = element+1
endif
! term depending on (x,y+1,z)
if (y==ipoints) then
val(element)=-b2(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
zt(k) = exp(-glob_x**2-glob_z**2)*exp(-glob_y)*(-val(element))
else
val(element)=-b2(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
icol(element)=(x-1)*ipoints*ipoints+(y)*ipoints+(z)
irow(element) = glob_row
element = element+1
endif
! term depending on (x+1,y,z)
if (x==ipoints) then
val(element)=-b3(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
zt(k) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-val(element))
else
val(element)=-b3(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
icol(element) = (x)*ipoints*ipoints+(y-1)*ipoints+(z)
irow(element) = glob_row
element = element+1
endif
end do
call psb_spins(element-1,irow,icol,val,a,desc_a,info)
if(info /= 0) exit
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),b,desc_a,info)
if(info /= 0) exit
zt(:)=0.d0
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
if(info /= 0) exit
end do
tgen = psb_wtime()-t1
if(info /= 0) then
info=4010
call psb_errpush(info,name)
goto 9999
end if
deallocate(val,irow,icol)
call psb_barrier(ictxt)
t1 = psb_wtime()
call psb_cdasb(desc_a,info)
if (info == 0) &
& call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_)
call psb_barrier(ictxt)
if(info /= 0) then
info=4010
call psb_errpush(info,name)
goto 9999
end if
call psb_geasb(b,desc_a,info)
call psb_geasb(xv,desc_a,info)
if(info /= 0) then
info=4010
call psb_errpush(info,name)
goto 9999
end if
tasb = psb_wtime()-t1
call psb_barrier(ictxt)
ttot = psb_wtime() - t0
call psb_amx(ictxt,talc)
call psb_amx(ictxt,tgen)
call psb_amx(ictxt,tasb)
call psb_amx(ictxt,ttot)
if(iam == psb_root_) then
write(*,'("The matrix has been generated and assembled in ",a3," format.")')&
& a%fida(1:3)
write(*,'("-allocation time : ",es12.5)') talc
write(*,'("-coeff. gen. time : ",es12.5)') tgen
write(*,'("-assembly time : ",es12.5)') tasb
write(*,'("-total time : ",es12.5)') ttot
end if
call psb_erractionrestore(err_act)
return
9999 continue
call psb_erractionrestore(err_act)
if (err_act == psb_act_abort_) then
call psb_error(ictxt)
return
end if
return
end subroutine create_matrix
end program mld_dexample_ml
!
! functions parametrizing the differential equation
!
function a1(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: a1
real(psb_dpk_) :: x,y,z
! a1=1.d0
a1=0.d0
end function a1
function a2(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: a2
real(psb_dpk_) :: x,y,z
! a2=2.d1*y
a2=0.d0
end function a2
function a3(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: a3
real(psb_dpk_) :: x,y,z
! a3=1.d0
a3=0.d0
end function a3
function a4(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: a4
real(psb_dpk_) :: x,y,z
! a4=1.d0
a4=0.d0
end function a4
function b1(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: b1
real(psb_dpk_) :: x,y,z
b1=1.d0
end function b1
function b2(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: b2
real(psb_dpk_) :: x,y,z
b2=1.d0
end function b2
function b3(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: b3
real(psb_dpk_) :: x,y,z
b3=1.d0
end function b3