311 lines
9.1 KiB
Fortran
311 lines
9.1 KiB
Fortran
!!$
|
|
!!$
|
|
!!$ MLD2P4 version 2.0
|
|
!!$ MultiLevel Domain Decomposition Parallel Preconditioners Package
|
|
!!$ based on PSBLAS (Parallel Sparse BLAS version 3.0)
|
|
!!$
|
|
!!$ (C) Copyright 2008,2009,2010
|
|
!!$
|
|
!!$ Salvatore Filippone University of Rome Tor Vergata
|
|
!!$ Alfredo Buttari CNRS-IRIT, Toulouse
|
|
!!$ Pasqua D'Ambra ICAR-CNR, Naples
|
|
!!$ Daniela di Serafino Second University of Naples
|
|
!!$
|
|
!!$ Redistribution and use in source and binary forms, with or without
|
|
!!$ modification, are permitted provided that the following conditions
|
|
!!$ are met:
|
|
!!$ 1. Redistributions of source code must retain the above copyright
|
|
!!$ notice, this list of conditions and the following disclaimer.
|
|
!!$ 2. Redistributions in binary form must reproduce the above copyright
|
|
!!$ notice, this list of conditions, and the following disclaimer in the
|
|
!!$ documentation and/or other materials provided with the distribution.
|
|
!!$ 3. The name of the MLD2P4 group or the names of its contributors may
|
|
!!$ not be used to endorse or promote products derived from this
|
|
!!$ software without specific written permission.
|
|
!!$
|
|
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
|
|
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
!!$ POSSIBILITY OF SUCH DAMAGE.
|
|
!!$
|
|
!!$
|
|
! File: mld_dexample_1lev.f90
|
|
!
|
|
! This sample program solves a linear system obtained by discretizing a
|
|
! PDE with Dirichlet BCs. The solver is BiCGStab coupled with one of the
|
|
! following multi-level preconditioner, as explained in Section 6.1 of
|
|
! the MLD2P4 User's and Reference Guide:
|
|
! - choice = 1, default multi-level Schwarz preconditioner (Sec. 6.1, Fig. 2)
|
|
! - choice = 2, hybrid three-level Schwarz preconditioner (Sec. 6.1, Fig. 3)
|
|
! - choice = 3, additive three-level Schwarz preconditioner (Sec. 6.1, Fig. 4)
|
|
!
|
|
!
|
|
! The PDE is a general second order equation in 3d
|
|
!
|
|
! a1 dd(u) a2 dd(u) a3 dd(u) b1 d(u) b2 d(u) b3 d(u)
|
|
! - ------ - ------ - ------ + ----- + ------ + ------ + c u = f
|
|
! dxdx dydy dzdz dx dy dz
|
|
!
|
|
! with Dirichlet boundary conditions
|
|
! u = g
|
|
!
|
|
! on the unit cube 0<=x,y,z<=1.
|
|
!
|
|
!
|
|
! Note that if b1=b2=b3=c=0., the PDE is the Laplace equation.
|
|
!
|
|
program mld_dexample_1lev
|
|
use psb_base_mod
|
|
use mld_prec_mod
|
|
use psb_krylov_mod
|
|
use psb_util_mod
|
|
use data_input
|
|
|
|
implicit none
|
|
|
|
|
|
! sparse matrices
|
|
type(psb_dspmat_type) :: A
|
|
|
|
! descriptor of sparse matrices
|
|
type(psb_desc_type):: desc_A
|
|
|
|
! preconditioner
|
|
type(mld_dprec_type) :: P
|
|
|
|
! right-hand side, solution and residual vectors
|
|
type(psb_d_vect_type) :: x, b, r
|
|
|
|
! solver parameters
|
|
real(psb_dpk_) :: tol, err
|
|
integer :: itmax, iter, itrace, istop
|
|
|
|
! parallel environment parameters
|
|
integer :: ictxt, iam, np
|
|
|
|
! other variables
|
|
integer :: i,info,j
|
|
integer(psb_long_int_k_) :: amatsize, precsize, descsize
|
|
integer :: idim, nlev, ierr, ircode
|
|
real(psb_dpk_) :: t1, t2, tprec, resmx, resmxp
|
|
character(len=5) :: afmt='CSR'
|
|
character(len=20) :: name
|
|
|
|
! initialize the parallel environment
|
|
call psb_init(ictxt)
|
|
call psb_info(ictxt,iam,np)
|
|
|
|
if (iam < 0) then
|
|
! This should not happen, but just in case
|
|
call psb_exit(ictxt)
|
|
stop
|
|
endif
|
|
|
|
name='mld_dexample_ml'
|
|
if(psb_get_errstatus() /= 0) goto 9999
|
|
info=psb_success_
|
|
call psb_set_errverbosity(2)
|
|
!
|
|
! Hello world
|
|
!
|
|
if (iam == psb_root_) then
|
|
write(*,*) 'Welcome to MLD2P4 version: ',mld_version_string_
|
|
write(*,*) 'This is the ',trim(name),' sample program'
|
|
end if
|
|
|
|
! get parameters
|
|
|
|
call get_parms(ictxt,idim,itmax,tol)
|
|
|
|
! allocate and fill in the coefficient matrix, rhs and initial guess
|
|
|
|
call psb_barrier(ictxt)
|
|
t1 = psb_wtime()
|
|
call psb_gen_pde3d(ictxt,idim,a,b,x,desc_a,afmt,&
|
|
& a1,a2,a3,b1,b2,b3,c,g,info)
|
|
call psb_barrier(ictxt)
|
|
t2 = psb_wtime() - t1
|
|
if(info /= psb_success_) then
|
|
info=psb_err_from_subroutine_
|
|
call psb_errpush(info,name)
|
|
goto 9999
|
|
end if
|
|
|
|
if (iam == psb_root_) write(*,'("Overall matrix creation time : ",es12.5)')t2
|
|
if (iam == psb_root_) write(*,'(" ")')
|
|
|
|
! set RAS with overlap 2 and ILU(0) on the local blocks
|
|
|
|
call mld_precinit(P,'AS',info)
|
|
call mld_precset(P,mld_sub_ovr_,2,info)
|
|
|
|
! build the preconditioner
|
|
|
|
call psb_barrier(ictxt)
|
|
t1 = psb_wtime()
|
|
|
|
call mld_precbld(A,desc_A,P,info)
|
|
|
|
tprec = psb_wtime()-t1
|
|
call psb_amx(ictxt, tprec)
|
|
|
|
if (info /= psb_success_) then
|
|
call psb_errpush(psb_err_from_subroutine_,name,a_err='psb_precbld')
|
|
goto 9999
|
|
end if
|
|
|
|
! set the initial guess
|
|
|
|
call psb_geall(x,desc_A,info)
|
|
call x%set(dzero)
|
|
call psb_geasb(x,desc_A,info)
|
|
|
|
! solve Ax=b with preconditioned BiCGSTAB
|
|
|
|
call psb_barrier(ictxt)
|
|
t1 = psb_wtime()
|
|
|
|
call psb_krylov('BICGSTAB',A,P,b,x,tol,desc_A,info,itmax,iter,err,itrace=1,istop=2)
|
|
|
|
t2 = psb_wtime() - t1
|
|
call psb_amx(ictxt,t2)
|
|
|
|
call psb_geall(r,desc_A,info)
|
|
call r%set(dzero)
|
|
call psb_geasb(r,desc_A,info)
|
|
call psb_geaxpby(done,b,dzero,r,desc_A,info)
|
|
call psb_spmm(-done,A,x,done,r,desc_A,info)
|
|
resmx = psb_genrm2(r,desc_A,info)
|
|
resmxp = psb_geamax(r,desc_A,info)
|
|
|
|
amatsize = a%sizeof()
|
|
descsize = desc_a%sizeof()
|
|
precsize = p%sizeof()
|
|
call psb_sum(ictxt,amatsize)
|
|
call psb_sum(ictxt,descsize)
|
|
call psb_sum(ictxt,precsize)
|
|
|
|
call mld_precdescr(P,info)
|
|
|
|
if (iam == psb_root_) then
|
|
write(*,'(" ")')
|
|
write(*,'("Matrix from PDE example")')
|
|
write(*,'("Computed solution on ",i8," processors")')np
|
|
write(*,'("Iterations to convergence : ",i6)')iter
|
|
write(*,'("Error estimate on exit : ",es12.5)')err
|
|
write(*,'("Time to build prec. : ",es12.5)')tprec
|
|
write(*,'("Time to solve system : ",es12.5)')t2
|
|
write(*,'("Time per iteration : ",es12.5)')t2/(iter)
|
|
write(*,'("Total time : ",es12.5)')t2+tprec
|
|
write(*,'("Residual 2-norm : ",es12.5)')resmx
|
|
write(*,'("Residual inf-norm : ",es12.5)')resmxp
|
|
write(*,'("Total memory occupation for A : ",i12)')amatsize
|
|
write(*,'("Total memory occupation for DESC_A : ",i12)')descsize
|
|
write(*,'("Total memory occupation for PREC : ",i12)')precsize
|
|
end if
|
|
|
|
call psb_gefree(b, desc_A,info)
|
|
call psb_gefree(x, desc_A,info)
|
|
call psb_spfree(A, desc_A,info)
|
|
call mld_precfree(P,info)
|
|
call psb_cdfree(desc_A,info)
|
|
|
|
9999 continue
|
|
if(info /= psb_success_) then
|
|
call psb_error(ictxt)
|
|
end if
|
|
call psb_exit(ictxt)
|
|
stop
|
|
|
|
contains
|
|
!
|
|
! get parameters from standard input
|
|
!
|
|
subroutine get_parms(ictxt,idim,itmax,tol)
|
|
|
|
use psb_base_mod
|
|
implicit none
|
|
|
|
integer :: idim, ictxt, itmax
|
|
real(psb_dpk_) :: tol
|
|
integer :: iam, np
|
|
|
|
call psb_info(ictxt,iam,np)
|
|
|
|
if (iam == psb_root_) then
|
|
! read input parameters
|
|
call read_data(idim,5)
|
|
call read_data(itmax,5)
|
|
call read_data(tol,5)
|
|
end if
|
|
|
|
call psb_bcast(ictxt,idim)
|
|
call psb_bcast(ictxt,itmax)
|
|
call psb_bcast(ictxt,tol)
|
|
|
|
end subroutine get_parms
|
|
!
|
|
! functions parametrizing the differential equation
|
|
!
|
|
function b1(x,y,z)
|
|
use psb_base_mod, only : psb_dpk_
|
|
real(psb_dpk_) :: b1
|
|
real(psb_dpk_), intent(in) :: x,y,z
|
|
b1=1.d0/sqrt(3.d0)
|
|
end function b1
|
|
function b2(x,y,z)
|
|
use psb_base_mod, only : psb_dpk_
|
|
real(psb_dpk_) :: b2
|
|
real(psb_dpk_), intent(in) :: x,y,z
|
|
b2=1.d0/sqrt(3.d0)
|
|
end function b2
|
|
function b3(x,y,z)
|
|
use psb_base_mod, only : psb_dpk_
|
|
real(psb_dpk_) :: b3
|
|
real(psb_dpk_), intent(in) :: x,y,z
|
|
b3=1.d0/sqrt(3.d0)
|
|
end function b3
|
|
function c(x,y,z)
|
|
use psb_base_mod, only : psb_dpk_
|
|
real(psb_dpk_) :: c
|
|
real(psb_dpk_), intent(in) :: x,y,z
|
|
c=0.d0
|
|
end function c
|
|
function a1(x,y,z)
|
|
use psb_base_mod, only : psb_dpk_
|
|
real(psb_dpk_) :: a1
|
|
real(psb_dpk_), intent(in) :: x,y,z
|
|
a1=1.d0/80
|
|
end function a1
|
|
function a2(x,y,z)
|
|
use psb_base_mod, only : psb_dpk_
|
|
real(psb_dpk_) :: a2
|
|
real(psb_dpk_), intent(in) :: x,y,z
|
|
a2=1.d0/80
|
|
end function a2
|
|
function a3(x,y,z)
|
|
use psb_base_mod, only : psb_dpk_
|
|
real(psb_dpk_) :: a3
|
|
real(psb_dpk_), intent(in) :: x,y,z
|
|
a3=1.d0/80
|
|
end function a3
|
|
function g(x,y,z)
|
|
use psb_base_mod, only : psb_dpk_, done
|
|
real(psb_dpk_) :: g
|
|
real(psb_dpk_), intent(in) :: x,y,z
|
|
g = dzero
|
|
if (x == done) then
|
|
g = done
|
|
else if (x == dzero) then
|
|
g = exp(y**2-z**2)
|
|
end if
|
|
end function g
|
|
end program mld_dexample_1lev
|