You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
981 lines
26 KiB
TeX
981 lines
26 KiB
TeX
\nonstopmode
|
|
\documentclass[a4paper,twoside,11pt]{article}
|
|
|
|
\usepackage{pstricks}
|
|
\usepackage{fancybox}
|
|
\usepackage{amsfonts}
|
|
\usepackage{ifpdf}
|
|
\usepackage[bookmarks=true, bookmarksnumbered=true, bookmarksopen=false, plainpages=false, pdfpagelabels, colorlinks, linkcolor=blue]{hyperref}
|
|
\usepackage{ifthen}
|
|
\usepackage{graphicx}
|
|
|
|
\newtheorem{theorem}{Theorem}
|
|
\newtheorem{corollary}{Corollary} \usepackage{rotating}
|
|
|
|
|
|
\pdfoutput=0
|
|
|
|
|
|
|
|
\setlength \textwidth{1.15\textwidth}
|
|
\pagestyle{myheadings}
|
|
|
|
|
|
|
|
\newcounter{subroutine}[subsection]
|
|
\newcounter{example}[subroutine] \makeatletter%
|
|
\providecommand{\subsubroutine}[2]{%
|
|
\stepcounter{subroutine}%
|
|
\subsection*{\flushleft #1---#2 \endflushleft}%
|
|
\addcontentsline{toc}{subsubsection}{#1}%
|
|
\markright{#1}}%%
|
|
\providecommand{\examplename}{Example}%
|
|
\providecommand{\syntaxname}{Syntax}
|
|
|
|
\makeatother%
|
|
\providecommand{\example}{\stepcounter{example}%
|
|
\section*{Example~\arabic{example}}}
|
|
|
|
%
|
|
\providecommand{\precdata}{\hyperlink{precdata}{{\tt mld\_prec\_type}}}%
|
|
\providecommand{\descdata}{\hyperlink{descdata}{{\tt psb\_desc\_type}}}%
|
|
\providecommand{\spdata}{\hyperlink{spdata}{{\tt psb\_spmat\_type}}}%
|
|
\providecommand{\Ref}[1]{\mbox{(\ref{#1})}}
|
|
|
|
|
|
|
|
\usepackage[dvips]{pstcol}
|
|
|
|
|
|
\pagecolor[gray]{.7}
|
|
|
|
\usepackage[latin1]{inputenc}
|
|
|
|
|
|
|
|
\makeatletter
|
|
|
|
\makeatletter
|
|
\count@=\the\catcode`\_ \catcode`\_=8
|
|
\newenvironment{tex2html_wrap}{}{}%
|
|
\catcode`\<=12\catcode`\_=\count@
|
|
\newcommand{\providedcommand}[1]{\expandafter\providecommand\csname #1\endcsname}%
|
|
\newcommand{\renewedcommand}[1]{\expandafter\providecommand\csname #1\endcsname{}%
|
|
\expandafter\renewcommand\csname #1\endcsname}%
|
|
\newcommand{\newedenvironment}[1]{\newenvironment{#1}{}{}\renewenvironment{#1}}%
|
|
\let\newedcommand\renewedcommand
|
|
\let\renewedenvironment\newedenvironment
|
|
\makeatother
|
|
\let\mathon=$
|
|
\let\mathoff=$
|
|
\ifx\AtBeginDocument\undefined \newcommand{\AtBeginDocument}[1]{}\fi
|
|
\newbox\sizebox
|
|
\setlength{\hoffset}{0pt}\setlength{\voffset}{0pt}
|
|
\addtolength{\textheight}{\footskip}\setlength{\footskip}{0pt}
|
|
\addtolength{\textheight}{\topmargin}\setlength{\topmargin}{0pt}
|
|
\addtolength{\textheight}{\headheight}\setlength{\headheight}{0pt}
|
|
\addtolength{\textheight}{\headsep}\setlength{\headsep}{0pt}
|
|
\setlength{\textwidth}{349pt}
|
|
\newwrite\lthtmlwrite
|
|
\makeatletter
|
|
\let\realnormalsize=\normalsize
|
|
\global\topskip=2sp
|
|
\def\preveqno{}\let\real@float=\@float \let\realend@float=\end@float
|
|
\def\@float{\let\@savefreelist\@freelist\real@float}
|
|
\def\liih@math{\ifmmode$\else\bad@math\fi}
|
|
\def\end@float{\realend@float\global\let\@freelist\@savefreelist}
|
|
\let\real@dbflt=\@dbflt \let\end@dblfloat=\end@float
|
|
\let\@largefloatcheck=\relax
|
|
\let\if@boxedmulticols=\iftrue
|
|
\def\@dbflt{\let\@savefreelist\@freelist\real@dbflt}
|
|
\def\adjustnormalsize{\def\normalsize{\mathsurround=0pt \realnormalsize
|
|
\parindent=0pt\abovedisplayskip=0pt\belowdisplayskip=0pt}%
|
|
\def\phantompar{\csname par\endcsname}\normalsize}%
|
|
\def\lthtmltypeout#1{{\let\protect\string \immediate\write\lthtmlwrite{#1}}}%
|
|
\newcommand\lthtmlhboxmathA{\adjustnormalsize\setbox\sizebox=\hbox\bgroup\kern.05em }%
|
|
\newcommand\lthtmlhboxmathB{\adjustnormalsize\setbox\sizebox=\hbox to\hsize\bgroup\hfill }%
|
|
\newcommand\lthtmlvboxmathA{\adjustnormalsize\setbox\sizebox=\vbox\bgroup %
|
|
\let\ifinner=\iffalse \let\)\liih@math }%
|
|
\newcommand\lthtmlboxmathZ{\@next\next\@currlist{}{\def\next{\voidb@x}}%
|
|
\expandafter\box\next\egroup}%
|
|
\newcommand\lthtmlmathtype[1]{\gdef\lthtmlmathenv{#1}}%
|
|
\newcommand\lthtmllogmath{\dimen0\ht\sizebox \advance\dimen0\dp\sizebox
|
|
\ifdim\dimen0>.95\vsize
|
|
\lthtmltypeout{%
|
|
*** image for \lthtmlmathenv\space is too tall at \the\dimen0, reducing to .95 vsize ***}%
|
|
\ht\sizebox.95\vsize \dp\sizebox\z@ \fi
|
|
\lthtmltypeout{l2hSize %
|
|
:\lthtmlmathenv:\the\ht\sizebox::\the\dp\sizebox::\the\wd\sizebox.\preveqno}}%
|
|
\newcommand\lthtmlfigureA[1]{\let\@savefreelist\@freelist
|
|
\lthtmlmathtype{#1}\lthtmlvboxmathA}%
|
|
\newcommand\lthtmlpictureA{\bgroup\catcode`\_=8 \lthtmlpictureB}%
|
|
\newcommand\lthtmlpictureB[1]{\lthtmlmathtype{#1}\egroup
|
|
\let\@savefreelist\@freelist \lthtmlhboxmathB}%
|
|
\newcommand\lthtmlpictureZ[1]{\hfill\lthtmlfigureZ}%
|
|
\newcommand\lthtmlfigureZ{\lthtmlboxmathZ\lthtmllogmath\copy\sizebox
|
|
\global\let\@freelist\@savefreelist}%
|
|
\newcommand\lthtmldisplayA{\bgroup\catcode`\_=8 \lthtmldisplayAi}%
|
|
\newcommand\lthtmldisplayAi[1]{\lthtmlmathtype{#1}\egroup\lthtmlvboxmathA}%
|
|
\newcommand\lthtmldisplayB[1]{\edef\preveqno{(\theequation)}%
|
|
\lthtmldisplayA{#1}\let\@eqnnum\relax}%
|
|
\newcommand\lthtmldisplayZ{\lthtmlboxmathZ\lthtmllogmath\lthtmlsetmath}%
|
|
\newcommand\lthtmlinlinemathA{\bgroup\catcode`\_=8 \lthtmlinlinemathB}
|
|
\newcommand\lthtmlinlinemathB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA
|
|
\vrule height1.5ex width0pt }%
|
|
\newcommand\lthtmlinlineA{\bgroup\catcode`\_=8 \lthtmlinlineB}%
|
|
\newcommand\lthtmlinlineB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA}%
|
|
\newcommand\lthtmlinlineZ{\egroup\expandafter\ifdim\dp\sizebox>0pt %
|
|
\expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetinline}
|
|
\newcommand\lthtmlinlinemathZ{\egroup\expandafter\ifdim\dp\sizebox>0pt %
|
|
\expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetmath}
|
|
\newcommand\lthtmlindisplaymathZ{\egroup %
|
|
\centerinlinemath\lthtmllogmath\lthtmlsetmath}
|
|
\def\lthtmlsetinline{\hbox{\vrule width.1em \vtop{\vbox{%
|
|
\kern.1em\copy\sizebox}\ifdim\dp\sizebox>0pt\kern.1em\else\kern.3pt\fi
|
|
\ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}}
|
|
\def\lthtmlsetmath{\hbox{\vrule width.1em\kern-.05em\vtop{\vbox{%
|
|
\kern.1em\kern0.8 pt\hbox{\hglue.17em\copy\sizebox\hglue0.8 pt}}\kern.3pt%
|
|
\ifdim\dp\sizebox>0pt\kern.1em\fi \kern0.8 pt%
|
|
\ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}}
|
|
\def\centerinlinemath{%
|
|
\dimen1=\ifdim\ht\sizebox<\dp\sizebox \dp\sizebox\else\ht\sizebox\fi
|
|
\advance\dimen1by.5pt \vrule width0pt height\dimen1 depth\dimen1
|
|
\dp\sizebox=\dimen1\ht\sizebox=\dimen1\relax}
|
|
|
|
\def\lthtmlcheckvsize{\ifdim\ht\sizebox<\vsize
|
|
\ifdim\wd\sizebox<\hsize\expandafter\hfill\fi \expandafter\vfill
|
|
\else\expandafter\vss\fi}%
|
|
\providecommand{\selectlanguage}[1]{}%
|
|
\makeatletter \tracingstats = 1
|
|
|
|
|
|
\begin{document}
|
|
\pagestyle{empty}\thispagestyle{empty}\lthtmltypeout{}%
|
|
\lthtmltypeout{latex2htmlLength hsize=\the\hsize}\lthtmltypeout{}%
|
|
\lthtmltypeout{latex2htmlLength vsize=\the\vsize}\lthtmltypeout{}%
|
|
\lthtmltypeout{latex2htmlLength hoffset=\the\hoffset}\lthtmltypeout{}%
|
|
\lthtmltypeout{latex2htmlLength voffset=\the\voffset}\lthtmltypeout{}%
|
|
\lthtmltypeout{latex2htmlLength topmargin=\the\topmargin}\lthtmltypeout{}%
|
|
\lthtmltypeout{latex2htmlLength topskip=\the\topskip}\lthtmltypeout{}%
|
|
\lthtmltypeout{latex2htmlLength headheight=\the\headheight}\lthtmltypeout{}%
|
|
\lthtmltypeout{latex2htmlLength headsep=\the\headsep}\lthtmltypeout{}%
|
|
\lthtmltypeout{latex2htmlLength parskip=\the\parskip}\lthtmltypeout{}%
|
|
\lthtmltypeout{latex2htmlLength oddsidemargin=\the\oddsidemargin}\lthtmltypeout{}%
|
|
\makeatletter
|
|
\if@twoside\lthtmltypeout{latex2htmlLength evensidemargin=\the\evensidemargin}%
|
|
\else\lthtmltypeout{latex2htmlLength evensidemargin=\the\oddsidemargin}\fi%
|
|
\lthtmltypeout{}%
|
|
\makeatother
|
|
\setcounter{page}{1}
|
|
\onecolumn
|
|
|
|
% !!! IMAGES START HERE !!!
|
|
|
|
|
|
|
|
\newlength{\centeroffset}%
|
|
|
|
\begingroup
|
|
\renewcommand{\thepage}{toc}
|
|
\endgroup
|
|
\stepcounter{section}
|
|
{\newpage\clearpage
|
|
% contents=begin{displaymath} Ax=b, end{displaymath}
|
|
\lthtmldisplayA{displaymath242}%
|
|
\begin{displaymath}
|
|
Ax=b,
|
|
\end{displaymath}%
|
|
\lthtmldisplayZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$A$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline268}%
|
|
$A$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{section}
|
|
\stepcounter{section}
|
|
\stepcounter{subsection}
|
|
\stepcounter{subsection}
|
|
\stepcounter{subsection}
|
|
\stepcounter{subsection}
|
|
\stepcounter{section}
|
|
\stepcounter{subsection}
|
|
{\newpage\clearpage
|
|
% contents=$A=(a_{ij}) \in \Re^{n \times n}$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline588}%
|
|
$A=(a_{ij}) \in \Re^{n \times n}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$G=(W,E)$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline590}%
|
|
$G=(W,E)$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$W=\{1, 2, \ldots, n\}$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline594}%
|
|
$W=\{1, 2, \ldots, n\}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$E=\{(i,j) : a_{ij} \neq 0\}$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline596}%
|
|
$E=\{(i,j) : a_{ij} \neq 0\}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$G$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline598}%
|
|
$G$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$\delta > 0$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline600}%
|
|
$\delta > 0$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$\delta$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline602}%
|
|
$\delta$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$W$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline604}%
|
|
$W$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$m$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline608}%
|
|
$m$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$W_i^0 \subset W$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline610}%
|
|
$W_i^0 \subset W$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$\cup_{i=1}^m W_i^0 = W$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline612}%
|
|
$\cup_{i=1}^m W_i^0 = W$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$W_i^\delta \supset W_i^{\delta-1}$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline618}%
|
|
$W_i^\delta \supset W_i^{\delta-1}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$W_i^{\delta-1}$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline620}%
|
|
$W_i^{\delta-1}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$n_i^\delta$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline622}%
|
|
$n_i^\delta$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$W_i^\delta$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline624}%
|
|
$W_i^\delta$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$R_i^{\delta} \in \Re^{n_i^\delta \times n}$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline626}%
|
|
$R_i^{\delta} \in
|
|
\Re^{n_i^\delta \times n}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$v \in \Re^n$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline628}%
|
|
$v \in \Re^n$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$v_i^{\delta} \in \Re^{n_i^\delta}$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline630}%
|
|
$v_i^{\delta} \in \Re^{n_i^\delta}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$v$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline632}%
|
|
$v$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$R_i^{\delta}$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline636}%
|
|
$R_i^{\delta}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$\Re^{n_i^\delta}$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline638}%
|
|
$\Re^{n_i^\delta}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$\Re^n$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline640}%
|
|
$\Re^n$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$A_i^\delta=R_i^\delta A (R_i^\delta)^T \in \Re^{n_i^\delta \times n_i^\delta}$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline642}%
|
|
$A_i^\delta=R_i^\delta A (R_i^\delta)^T \in
|
|
\Re^{n_i^\delta \times n_i^\delta}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$W_i^{\delta}$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline646}%
|
|
$W_i^{\delta}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=begin{displaymath} M_{AS}^{-1}= \sum_{i=1}^m (R_i^{\delta})^T (A_i^\delta)^{-1} R_i^{\delta}, end{displaymath}
|
|
\lthtmldisplayA{displaymath566}%
|
|
\begin{displaymath}
|
|
M_{AS}^{-1}= \sum_{i=1}^m (R_i^{\delta})^T
|
|
(A_i^\delta)^{-1} R_i^{\delta},
|
|
\end{displaymath}%
|
|
\lthtmldisplayZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$A_i^\delta$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline648}%
|
|
$A_i^\delta$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$v_i = R_i^{\delta} v$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline654}%
|
|
$v_i = R_i^{\delta} v$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$i=1,\ldots,m$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline656}%
|
|
$i=1,\ldots,m$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$A_i^\delta w_i = v_i$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline658}%
|
|
$A_i^\delta w_i = v_i$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$w_i$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline662}%
|
|
$w_i$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$w = \sum_{i=1}^m (R_i^{\delta})^T w_i$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline664}%
|
|
$w = \sum_{i=1}^m (R_i^{\delta})^T w_i$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$p$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline666}%
|
|
$p$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$p,t$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline670}%
|
|
$p,t$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$(\tilde{R}_i^0)^T \in \Re^{n_i^\delta \times n}$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline674}%
|
|
$(\tilde{R}_i^0)^T \in \Re^{n_i^\delta \times n}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$\tilde{R}_i^0$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline676}%
|
|
$\tilde{R}_i^0$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$R_i^\delta$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline678}%
|
|
$R_i^\delta$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$W_i^\delta \backslash W_i^0$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline680}%
|
|
$W_i^\delta \backslash W_i^0$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=begin{displaymath} M_{RAS}^{-1}= \sum_{i=1}^m (\tilde{R}_i^0)^T (A_i^\delta)^{-1} R_i^{\delta}. end{displaymath}
|
|
\lthtmldisplayA{displaymath567}%
|
|
\begin{displaymath}
|
|
M_{RAS}^{-1}= \sum_{i=1}^m (\tilde{R}_i^0)^T
|
|
(A_i^\delta)^{-1} R_i^{\delta}.
|
|
\end{displaymath}%
|
|
\lthtmldisplayZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=begin{displaymath} M_{ASH}^{-1}= \sum_{i=1}^m (R_i^{\delta})^T (A_i^\delta)^{-1} \tilde{R}_i^0. end{displaymath}
|
|
\lthtmldisplayA{displaymath568}%
|
|
\begin{displaymath} M_{ASH}^{-1}= \sum_{i=1}^m (R_i^{\delta})^T
|
|
(A_i^\delta)^{-1} \tilde{R}_i^0.
|
|
\end{displaymath}%
|
|
\lthtmldisplayZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$\delta=0$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline682}%
|
|
$\delta=0$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$A_C$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline688}%
|
|
$A_C$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$W_C$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline694}%
|
|
$W_C$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$n_C$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline696}%
|
|
$n_C$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$R_C \in \Re^{n_C \times n}$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline698}%
|
|
$R_C \in \Re^{n_C \times n}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=begin{displaymath} A_C=R_C A R_C^T end{displaymath}
|
|
\lthtmldisplayA{displaymath569}%
|
|
\begin{displaymath}
|
|
A_C=R_C A R_C^T
|
|
\end{displaymath}%
|
|
\lthtmldisplayZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$M_{1L}$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline702}%
|
|
$M_{1L}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=begin{displaymath} M_{C}^{-1}= R_C^T A_C^{-1} R_C, end{displaymath}
|
|
\lthtmldisplayA{displaymath570}%
|
|
\begin{displaymath}
|
|
M_{C}^{-1}= R_C^T A_C^{-1} R_C,
|
|
\end{displaymath}%
|
|
\lthtmldisplayZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$M_{C}^{-1}$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline706}%
|
|
$M_{C}^{-1}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$M_{C}$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline712}%
|
|
$M_{C}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=begin{displaymath} M_{2LA}^{-1} = M_{C}^{-1} + M_{1L}^{-1}. end{displaymath}
|
|
\lthtmldisplayA{displaymath571}%
|
|
\begin{displaymath}
|
|
M_{2LA}^{-1} = M_{C}^{-1} + M_{1L}^{-1}.
|
|
\end{displaymath}%
|
|
\lthtmldisplayZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$M_{2L-A}^{-1}$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline716}%
|
|
$M_{2L-A}^{-1}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$M_{1L}^{-1}$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline722}%
|
|
$M_{1L}^{-1}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=begin{displaymath} begin{array}{l} w = M_{1L}^{-1} v, \\z = w + M_{C}^{-1} (v-Aw); end{array} end{displaymath}
|
|
\lthtmldisplayA{displaymath572}%
|
|
\begin{displaymath}
|
|
\begin{array}{l}
|
|
w = M_{1L}^{-1} v, \\
|
|
z = w + M_{C}^{-1} (v-Aw);
|
|
\end{array}
|
|
\end{displaymath}%
|
|
\lthtmldisplayZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=begin{displaymath} M_{2LH-PRE}^{-1} = M_{C}^{-1} + \left( I - M_{C}^{-1}A \right) M_{1L}^{-1}. end{displaymath}
|
|
\lthtmldisplayA{displaymath573}%
|
|
\begin{displaymath}
|
|
M_{2LH-PRE}^{-1} = M_{C}^{-1} + \left( I - M_{C}^{-1}A \right) M_{1L}^{-1}.
|
|
\end{displaymath}%
|
|
\lthtmldisplayZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=begin{displaymath} begin{array}{l} w = M_{C}^{-1} v , \\z = w + M_{1L}^{-1} (v-Aw) , end{array} end{displaymath}
|
|
\lthtmldisplayA{displaymath574}%
|
|
\begin{displaymath}
|
|
\begin{array}{l}
|
|
w = M_{C}^{-1} v , \\
|
|
z = w + M_{1L}^{-1} (v-Aw) ,
|
|
\end{array}
|
|
\end{displaymath}%
|
|
\lthtmldisplayZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=begin{displaymath} M_{2LH-POST}^{-1} = M_{1L}^{-1} + \left( I - M_{1L}^{-1}A \right) M_{C}^{-1}. end{displaymath}
|
|
\lthtmldisplayA{displaymath575}%
|
|
\begin{displaymath}
|
|
M_{2LH-POST}^{-1} = M_{1L}^{-1} + \left( I - M_{1L}^{-1}A \right) M_{C}^{-1}.
|
|
\end{displaymath}%
|
|
\lthtmldisplayZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$M$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline736}%
|
|
$M$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$w=M^{-1}v$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline740}%
|
|
$w=M^{-1}v$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$nlev$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline742}%
|
|
$nlev$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$l$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline744}%
|
|
$l$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$A_l$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline746}%
|
|
$A_l$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$M_l$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline748}%
|
|
$M_l$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$A_1=A$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline750}%
|
|
$A_1=A$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=\framebox{ begin{minipage}{.85\textwidth} {\small begin{tabbing} \quad \=\quad \=\quad \=\quad \\[-1mm] $v_1 = v$; \\[2mm] \textbf{for $l=2, nlev$\ do}\\[1mm] \> ! transfer $v_{l-1}$\ to the next ...}
|
|
\lthtmlpictureA{tex2html_wrap862}%
|
|
\framebox{
|
|
\begin{minipage}{.85\textwidth} {\small
|
|
\begin{tabbing}
|
|
\quad \=\quad \=\quad \=\quad \\[-1mm]
|
|
$v_1 = v$; \\[2mm]
|
|
\textbf{for $l=2, nlev$\ do}\\[1mm]
|
|
\> ! transfer $v_{l-1}$\ to the next coarser level\\
|
|
\> $v_l = R_lv_{l-1}$\ \\[1mm]
|
|
\textbf{endfor} \\[2mm]
|
|
! apply the coarsest-level correction\\[1mm]
|
|
$y_{nlev} = A_{nlev}^{-1} v_{nlev}$\\[2mm]
|
|
\textbf{for $l=nlev -1 , 1, -1$\ do}\\[1mm]
|
|
\> ! transfer $y_{l+1}$\ to the next finer level\\
|
|
\> $y_l = R_{l+1}^T y_{l+1}$;\\[1mm]
|
|
\> ! compute the residual at the current level\\
|
|
\> $r_l = v_l-A_l^{-1} y_l$;\\[1mm]
|
|
\> ! apply the basic Schwarz preconditioner to the residual\\
|
|
\> $r_l = M_l^{-1} r_l$\\[1mm]
|
|
\> ! update $y_l$\\
|
|
\> $y_l = y_l+r_l$\\
|
|
\textbf{endfor} \\[1mm]
|
|
$w = y_1$;
|
|
\end{tabbing}
|
|
}
|
|
\end{minipage}
|
|
}%
|
|
\lthtmlpictureZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{subsection}
|
|
{\newpage\clearpage
|
|
% contents=$R_C$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline778}%
|
|
$R_C$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$R_C^T$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline786}%
|
|
$R_C^T$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$N_r$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline800}%
|
|
$N_r$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$r \in W$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline804}%
|
|
$r \in W$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=begin{displaymath} N_r = \left\{s \in W: |a_{rs}| > \theta \sqrt{|a_{rr}a_{ss}|} \right\} \cup \left\{ r \right\} , end{displaymath}
|
|
\lthtmldisplayA{displaymath576}%
|
|
\begin{displaymath} N_r = \left\{s \in W: |a_{rs}| > \theta \sqrt{|a_{rr}a_{ss}|} \right\}
|
|
\cup \left\{ r \right\} ,
|
|
\end{displaymath}%
|
|
\lthtmldisplayZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$\theta \in [0,1]$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline806}%
|
|
$\theta \in [0,1]$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$i$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline808}%
|
|
$i$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$W_i^0$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline810}%
|
|
$W_i^0$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$P_C=R_C^T$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline814}%
|
|
$P_C=R_C^T$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$P \in \Re^{n \times n_C}$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline816}%
|
|
$P \in \Re^{n \times n_C}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=begin{displaymath} P=(p_{ij}), \quad p_{ij}= \left\{ begin{array}{ll} 1 & \quad \mbox{if} \; i \in V^j_C \\0 & \quad \mbox{otherwise} end{array} \right. . end{displaymath}
|
|
\lthtmldisplayA{displaymath533}%
|
|
\begin{displaymath}
|
|
P=(p_{ij}), \quad p_{ij}=
|
|
\left\{ \begin{array}{ll}
|
|
1 & \quad \mbox{if} \; i \in V^j_C \\
|
|
0 & \quad \mbox{otherwise}
|
|
\end{array} \right. .
|
|
\end{displaymath}%
|
|
\lthtmldisplayZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$P_C$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline818}%
|
|
$P_C$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$P$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline820}%
|
|
$P$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$S \in \Re^{n \times n}$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline822}%
|
|
$S \in \Re^{n \times n}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=begin{displaymath} P_C = S P, end{displaymath}
|
|
\lthtmldisplayA{displaymath544}%
|
|
\begin{displaymath}
|
|
P_C = S P,
|
|
\end{displaymath}%
|
|
\lthtmldisplayZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$S$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline824}%
|
|
$S$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=begin{displaymath} S = I - \omega D^{-1} A , end{displaymath}
|
|
\lthtmldisplayA{displaymath548}%
|
|
\begin{displaymath}
|
|
S = I - \omega D^{-1} A ,
|
|
\end{displaymath}%
|
|
\lthtmldisplayZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$\omega$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline826}%
|
|
$\omega$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$D^{-1}A$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline828}%
|
|
$D^{-1}A$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{section}
|
|
{\newpage\clearpage
|
|
% contents=$\theta = 0$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline985}%
|
|
$\theta = 0$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{subsection}
|
|
\stepcounter{section}
|
|
{\newpage\clearpage
|
|
% contents=$w$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline1316}%
|
|
$w$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{subsection}
|
|
\stepcounter{subsection}
|
|
{\newpage\clearpage
|
|
% contents=$\ge 0$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline1320}%
|
|
$\ge 0$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$t$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline1334}%
|
|
$t$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$\in [0, 1]$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline1338}%
|
|
$\in [0, 1]$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$\theta$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline1340}%
|
|
$\theta$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$4/(3||D^{-1}A||_\infty)$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline1346}%
|
|
$4/(3||D^{-1}A||_\infty)$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$> 0$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline1362}%
|
|
$> 0$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{subsection}
|
|
\stepcounter{subsection}
|
|
{\newpage\clearpage
|
|
% contents=$y = op(M^{-1})\, x$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline1374}%
|
|
$y = op(M^{-1})\, x$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$op$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline1378}%
|
|
$op$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$x$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline1382}%
|
|
$x$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$y$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline1384}%
|
|
$y$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$op(M^{-1}) = M^{-1}$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline1386}%
|
|
$op(M^{-1}) = M^{-1}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$op(M^{-1}) = M^{-T}$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline1388}%
|
|
$op(M^{-1}) = M^{-T}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$M^{-1})$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline1390}%
|
|
$M^{-1})$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
% contents=$op(M^{-1}) = M^{-C}$
|
|
\lthtmlinlinemathA{tex2html_wrap_inline1392}%
|
|
$op(M^{-1}) = M^{-C}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{subsection}
|
|
\stepcounter{subsection}
|
|
\stepcounter{section}
|
|
\appendix
|
|
\stepcounter{section}
|
|
|
|
\end{document}
|