You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
445 lines
14 KiB
Fortran
445 lines
14 KiB
Fortran
!
|
|
!
|
|
! MLD2P4 version 2.1
|
|
! MultiLevel Domain Decomposition Parallel Preconditioners Package
|
|
! based on PSBLAS (Parallel Sparse BLAS version 3.5)
|
|
!
|
|
! (C) Copyright 2008-2018
|
|
!
|
|
! Salvatore Filippone
|
|
! Pasqua D'Ambra
|
|
! Daniela di Serafino
|
|
!
|
|
! Redistribution and use in source and binary forms, with or without
|
|
! modification, are permitted provided that the following conditions
|
|
! are met:
|
|
! 1. Redistributions of source code must retain the above copyright
|
|
! notice, this list of conditions and the following disclaimer.
|
|
! 2. Redistributions in binary form must reproduce the above copyright
|
|
! notice, this list of conditions, and the following disclaimer in the
|
|
! documentation and/or other materials provided with the distribution.
|
|
! 3. The name of the MLD2P4 group or the names of its contributors may
|
|
! not be used to endorse or promote products derived from this
|
|
! software without specific written permission.
|
|
!
|
|
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
|
|
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
! POSSIBILITY OF SUCH DAMAGE.
|
|
!
|
|
module mld_s_pde_mod
|
|
use psb_base_mod, only : psb_spk_, psb_ipk_, psb_desc_type,&
|
|
& psb_sspmat_type, psb_s_vect_type, szero,&
|
|
& psb_s_base_sparse_mat, psb_s_base_vect_type, psb_i_base_vect_type
|
|
|
|
interface
|
|
function s_func_3d(x,y,z) result(val)
|
|
import :: psb_spk_
|
|
real(psb_spk_), intent(in) :: x,y,z
|
|
real(psb_spk_) :: val
|
|
end function s_func_3d
|
|
end interface
|
|
|
|
interface mld_gen_pde3d
|
|
module procedure mld_s_gen_pde3d
|
|
end interface mld_gen_pde3d
|
|
|
|
|
|
contains
|
|
|
|
function s_null_func_3d(x,y,z) result(val)
|
|
|
|
real(psb_spk_), intent(in) :: x,y,z
|
|
real(psb_spk_) :: val
|
|
|
|
val = szero
|
|
|
|
end function s_null_func_3d
|
|
|
|
!
|
|
! subroutine to allocate and fill in the coefficient matrix and
|
|
! the rhs.
|
|
!
|
|
subroutine mld_s_gen_pde3d(ictxt,idim,a,bv,xv,desc_a,afmt,&
|
|
& a1,a2,a3,b1,b2,b3,c,g,info,f,amold,vmold,imold,nrl,iv)
|
|
use psb_base_mod
|
|
!
|
|
! Discretizes the partial differential equation
|
|
!
|
|
! a1 dd(u) a2 dd(u) a3 dd(u) b1 d(u) b2 d(u) b3 d(u)
|
|
! - ------ - ------ - ------ + ----- + ------ + ------ + c u = f
|
|
! dxdx dydy dzdz dx dy dz
|
|
!
|
|
! with Dirichlet boundary conditions
|
|
! u = g
|
|
!
|
|
! on the unit cube 0<=x,y,z<=1.
|
|
!
|
|
!
|
|
! Note that if b1=b2=b3=c=0., the PDE is the Laplace equation.
|
|
!
|
|
implicit none
|
|
procedure(s_func_3d) :: b1,b2,b3,c,a1,a2,a3,g
|
|
integer(psb_ipk_) :: idim
|
|
type(psb_sspmat_type) :: a
|
|
type(psb_s_vect_type) :: xv,bv
|
|
type(psb_desc_type) :: desc_a
|
|
integer(psb_ipk_) :: ictxt, info
|
|
character(len=*) :: afmt
|
|
procedure(s_func_3d), optional :: f
|
|
class(psb_s_base_sparse_mat), optional :: amold
|
|
class(psb_s_base_vect_type), optional :: vmold
|
|
class(psb_i_base_vect_type), optional :: imold
|
|
integer(psb_ipk_), optional :: nrl,iv(:)
|
|
|
|
! Local variables.
|
|
|
|
integer(psb_ipk_), parameter :: nb=20
|
|
type(psb_s_csc_sparse_mat) :: acsc
|
|
type(psb_s_coo_sparse_mat) :: acoo
|
|
type(psb_s_csr_sparse_mat) :: acsr
|
|
real(psb_spk_) :: zt(nb),x,y,z
|
|
integer(psb_ipk_) :: m,n,nnz,glob_row,nlr,i,ii,ib,k
|
|
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
|
|
integer(psb_ipk_) :: np, iam, nr, nt
|
|
integer(psb_ipk_) :: icoeff
|
|
integer(psb_ipk_), allocatable :: irow(:),icol(:),myidx(:)
|
|
real(psb_spk_), allocatable :: val(:)
|
|
! deltah dimension of each grid cell
|
|
! deltat discretization time
|
|
real(psb_spk_) :: deltah, sqdeltah, deltah2
|
|
real(psb_spk_), parameter :: rhs=szero,one=sone,zero=szero
|
|
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
|
|
integer(psb_ipk_) :: err_act
|
|
procedure(s_func_3d), pointer :: f_
|
|
character(len=20) :: name, ch_err,tmpfmt
|
|
|
|
info = psb_success_
|
|
name = 'create_matrix'
|
|
call psb_erractionsave(err_act)
|
|
|
|
call psb_info(ictxt, iam, np)
|
|
|
|
|
|
if (present(f)) then
|
|
f_ => f
|
|
else
|
|
f_ => s_null_func_3d
|
|
end if
|
|
|
|
deltah = 1.d0/(idim+2)
|
|
sqdeltah = deltah*deltah
|
|
deltah2 = 2.d0* deltah
|
|
|
|
! initialize array descriptor and sparse matrix storage. provide an
|
|
! estimate of the number of non zeroes
|
|
|
|
m = idim*idim*idim
|
|
n = m
|
|
nnz = ((n*9)/(np))
|
|
if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
|
|
|
|
if (.not.present(iv)) then
|
|
if (present(nrl)) then
|
|
nr = nrl
|
|
else
|
|
!
|
|
! Using a simple BLOCK distribution.
|
|
!
|
|
nt = (m+np-1)/np
|
|
nr = max(0,min(nt,m-(iam*nt)))
|
|
end if
|
|
|
|
nt = nr
|
|
call psb_sum(ictxt,nt)
|
|
if (nt /= m) then
|
|
write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
|
|
info = -1
|
|
call psb_barrier(ictxt)
|
|
call psb_abort(ictxt)
|
|
return
|
|
end if
|
|
else
|
|
if (size(iv) /= m) then
|
|
write(psb_err_unit,*) iam, 'Initialization error IV',size(iv),m
|
|
info = -1
|
|
call psb_barrier(ictxt)
|
|
call psb_abort(ictxt)
|
|
return
|
|
end if
|
|
|
|
end if
|
|
call psb_barrier(ictxt)
|
|
t0 = psb_wtime()
|
|
if (present(iv)) then
|
|
call psb_cdall(ictxt,desc_a,info,vg=iv)
|
|
else
|
|
call psb_cdall(ictxt,desc_a,info,nl=nr)
|
|
end if
|
|
|
|
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
|
|
! define rhs from boundary conditions; also build initial guess
|
|
if (info == psb_success_) call psb_geall(xv,desc_a,info)
|
|
if (info == psb_success_) call psb_geall(bv,desc_a,info)
|
|
|
|
call psb_barrier(ictxt)
|
|
talc = psb_wtime()-t0
|
|
|
|
if (info /= psb_success_) then
|
|
info=psb_err_from_subroutine_
|
|
ch_err='allocation rout.'
|
|
call psb_errpush(info,name,a_err=ch_err)
|
|
goto 9999
|
|
end if
|
|
|
|
! we build an auxiliary matrix consisting of one row at a
|
|
! time; just a small matrix. might be extended to generate
|
|
! a bunch of rows per call.
|
|
!
|
|
allocate(val(20*nb),irow(20*nb),&
|
|
&icol(20*nb),stat=info)
|
|
if (info /= psb_success_ ) then
|
|
info=psb_err_alloc_dealloc_
|
|
call psb_errpush(info,name)
|
|
goto 9999
|
|
endif
|
|
|
|
myidx = desc_a%get_global_indices()
|
|
nlr = size(myidx)
|
|
|
|
! loop over rows belonging to current process in a block
|
|
! distribution.
|
|
|
|
call psb_barrier(ictxt)
|
|
t1 = psb_wtime()
|
|
do ii=1, nlr,nb
|
|
ib = min(nb,nlr-ii+1)
|
|
icoeff = 1
|
|
do k=1,ib
|
|
i=ii+k-1
|
|
! local matrix pointer
|
|
glob_row=myidx(i)
|
|
! compute gridpoint coordinates
|
|
if (mod(glob_row,(idim*idim)) == 0) then
|
|
ix = glob_row/(idim*idim)
|
|
else
|
|
ix = glob_row/(idim*idim)+1
|
|
endif
|
|
if (mod((glob_row-(ix-1)*idim*idim),idim) == 0) then
|
|
iy = (glob_row-(ix-1)*idim*idim)/idim
|
|
else
|
|
iy = (glob_row-(ix-1)*idim*idim)/idim+1
|
|
endif
|
|
iz = glob_row-(ix-1)*idim*idim-(iy-1)*idim
|
|
! x, y, x coordinates
|
|
x = (ix-1)*deltah
|
|
y = (iy-1)*deltah
|
|
z = (iz-1)*deltah
|
|
zt(k) = f_(x,y,z)
|
|
! internal point: build discretization
|
|
!
|
|
! term depending on (x-1,y,z)
|
|
!
|
|
val(icoeff) = -a1(x,y,z)/sqdeltah-b1(x,y,z)/deltah2
|
|
if (ix == 1) then
|
|
zt(k) = g(szero,y,z)*(-val(icoeff)) + zt(k)
|
|
else
|
|
icol(icoeff) = (ix-2)*idim*idim+(iy-1)*idim+(iz)
|
|
irow(icoeff) = glob_row
|
|
icoeff = icoeff+1
|
|
endif
|
|
! term depending on (x,y-1,z)
|
|
val(icoeff) = -a2(x,y,z)/sqdeltah-b2(x,y,z)/deltah2
|
|
if (iy == 1) then
|
|
zt(k) = g(x,szero,z)*(-val(icoeff)) + zt(k)
|
|
else
|
|
icol(icoeff) = (ix-1)*idim*idim+(iy-2)*idim+(iz)
|
|
irow(icoeff) = glob_row
|
|
icoeff = icoeff+1
|
|
endif
|
|
! term depending on (x,y,z-1)
|
|
val(icoeff)=-a3(x,y,z)/sqdeltah-b3(x,y,z)/deltah2
|
|
if (iz == 1) then
|
|
zt(k) = g(x,y,szero)*(-val(icoeff)) + zt(k)
|
|
else
|
|
icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz-1)
|
|
irow(icoeff) = glob_row
|
|
icoeff = icoeff+1
|
|
endif
|
|
|
|
! term depending on (x,y,z)
|
|
val(icoeff)=2.d0*(a1(x,y,z)+a2(x,y,z)+a3(x,y,z))/sqdeltah &
|
|
& + c(x,y,z)
|
|
icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz)
|
|
irow(icoeff) = glob_row
|
|
icoeff = icoeff+1
|
|
! term depending on (x,y,z+1)
|
|
val(icoeff)=-a3(x,y,z)/sqdeltah+b3(x,y,z)/deltah2
|
|
if (iz == idim) then
|
|
zt(k) = g(x,y,sone)*(-val(icoeff)) + zt(k)
|
|
else
|
|
icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz+1)
|
|
irow(icoeff) = glob_row
|
|
icoeff = icoeff+1
|
|
endif
|
|
! term depending on (x,y+1,z)
|
|
val(icoeff)=-a2(x,y,z)/sqdeltah+b2(x,y,z)/deltah2
|
|
if (iy == idim) then
|
|
zt(k) = g(x,sone,z)*(-val(icoeff)) + zt(k)
|
|
else
|
|
icol(icoeff) = (ix-1)*idim*idim+(iy)*idim+(iz)
|
|
irow(icoeff) = glob_row
|
|
icoeff = icoeff+1
|
|
endif
|
|
! term depending on (x+1,y,z)
|
|
val(icoeff)=-a1(x,y,z)/sqdeltah+b1(x,y,z)/deltah2
|
|
if (ix==idim) then
|
|
zt(k) = g(sone,y,z)*(-val(icoeff)) + zt(k)
|
|
else
|
|
icol(icoeff) = (ix)*idim*idim+(iy-1)*idim+(iz)
|
|
irow(icoeff) = glob_row
|
|
icoeff = icoeff+1
|
|
endif
|
|
|
|
end do
|
|
call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
|
|
if(info /= psb_success_) exit
|
|
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
|
|
if(info /= psb_success_) exit
|
|
zt(:)=0.d0
|
|
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
|
|
if(info /= psb_success_) exit
|
|
end do
|
|
|
|
tgen = psb_wtime()-t1
|
|
if(info /= psb_success_) then
|
|
info=psb_err_from_subroutine_
|
|
ch_err='insert rout.'
|
|
call psb_errpush(info,name,a_err=ch_err)
|
|
goto 9999
|
|
end if
|
|
|
|
deallocate(val,irow,icol)
|
|
|
|
call psb_barrier(ictxt)
|
|
t1 = psb_wtime()
|
|
call psb_cdasb(desc_a,info,mold=imold)
|
|
tcdasb = psb_wtime()-t1
|
|
call psb_barrier(ictxt)
|
|
t1 = psb_wtime()
|
|
if (info == psb_success_) then
|
|
if (present(amold)) then
|
|
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,mold=amold)
|
|
else
|
|
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
|
|
end if
|
|
end if
|
|
call psb_barrier(ictxt)
|
|
if(info /= psb_success_) then
|
|
info=psb_err_from_subroutine_
|
|
ch_err='asb rout.'
|
|
call psb_errpush(info,name,a_err=ch_err)
|
|
goto 9999
|
|
end if
|
|
if (info == psb_success_) call psb_geasb(xv,desc_a,info,mold=vmold)
|
|
if (info == psb_success_) call psb_geasb(bv,desc_a,info,mold=vmold)
|
|
if(info /= psb_success_) then
|
|
info=psb_err_from_subroutine_
|
|
ch_err='asb rout.'
|
|
call psb_errpush(info,name,a_err=ch_err)
|
|
goto 9999
|
|
end if
|
|
tasb = psb_wtime()-t1
|
|
call psb_barrier(ictxt)
|
|
ttot = psb_wtime() - t0
|
|
|
|
call psb_amx(ictxt,talc)
|
|
call psb_amx(ictxt,tgen)
|
|
call psb_amx(ictxt,tasb)
|
|
call psb_amx(ictxt,ttot)
|
|
if(iam == psb_root_) then
|
|
tmpfmt = a%get_fmt()
|
|
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
|
|
& tmpfmt
|
|
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
|
|
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
|
|
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
|
|
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
|
|
write(psb_out_unit,'("-total time : ",es12.5)') ttot
|
|
|
|
end if
|
|
call psb_erractionrestore(err_act)
|
|
return
|
|
|
|
9999 call psb_error_handler(ictxt,err_act)
|
|
|
|
return
|
|
end subroutine mld_s_gen_pde3d
|
|
|
|
|
|
!
|
|
! functions parametrizing the differential equation
|
|
!
|
|
function b1(x,y,z)
|
|
use psb_base_mod, only : psb_spk_, sone
|
|
real(psb_spk_) :: b1
|
|
real(psb_spk_), intent(in) :: x,y,z
|
|
b1=szero
|
|
end function b1
|
|
function b2(x,y,z)
|
|
use psb_base_mod, only : psb_spk_, sone
|
|
real(psb_spk_) :: b2
|
|
real(psb_spk_), intent(in) :: x,y,z
|
|
b2=szero
|
|
end function b2
|
|
function b3(x,y,z)
|
|
use psb_base_mod, only : psb_spk_, sone
|
|
real(psb_spk_) :: b3
|
|
real(psb_spk_), intent(in) :: x,y,z
|
|
b3=szero
|
|
end function b3
|
|
function c(x,y,z)
|
|
use psb_base_mod, only : psb_spk_, sone
|
|
real(psb_spk_) :: c
|
|
real(psb_spk_), intent(in) :: x,y,z
|
|
c=szero
|
|
end function c
|
|
function a1(x,y,z)
|
|
use psb_base_mod, only : psb_spk_, sone
|
|
real(psb_spk_) :: a1
|
|
real(psb_spk_), intent(in) :: x,y,z
|
|
a1=sone
|
|
end function a1
|
|
function a2(x,y,z)
|
|
use psb_base_mod, only : psb_spk_, sone
|
|
real(psb_spk_) :: a2
|
|
real(psb_spk_), intent(in) :: x,y,z
|
|
a2=sone
|
|
end function a2
|
|
function a3(x,y,z)
|
|
use psb_base_mod, only : psb_spk_, sone
|
|
real(psb_spk_) :: a3
|
|
real(psb_spk_), intent(in) :: x,y,z
|
|
a3=sone
|
|
end function a3
|
|
function g(x,y,z)
|
|
use psb_base_mod, only : psb_spk_, sone, szero
|
|
real(psb_spk_) :: g
|
|
real(psb_spk_), intent(in) :: x,y,z
|
|
g = szero
|
|
if (x == sone) then
|
|
g = sone
|
|
else if (x == szero) then
|
|
g = exp(y**2-z**2)
|
|
end if
|
|
end function g
|
|
end module mld_s_pde_mod
|
|
|