237 lines
7.7 KiB
Fortran
237 lines
7.7 KiB
Fortran
!
|
|
!
|
|
! AMG4PSBLAS version 1.0
|
|
! Algebraic Multigrid Package
|
|
! based on PSBLAS (Parallel Sparse BLAS version 3.7)
|
|
!
|
|
! (C) Copyright 2021
|
|
!
|
|
! Salvatore Filippone
|
|
! Pasqua D'Ambra
|
|
! Fabio Durastante
|
|
!
|
|
! Redistribution and use in source and binary forms, with or without
|
|
! modification, are permitted provided that the following conditions
|
|
! are met:
|
|
! 1. Redistributions of source code must retain the above copyright
|
|
! notice, this list of conditions and the following disclaimer.
|
|
! 2. Redistributions in binary form must reproduce the above copyright
|
|
! notice, this list of conditions, and the following disclaimer in the
|
|
! documentation and/or other materials provided with the distribution.
|
|
! 3. The name of the AMG4PSBLAS group or the names of its contributors may
|
|
! not be used to endorse or promote products derived from this
|
|
! software without specific written permission.
|
|
!
|
|
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AMG4PSBLAS GROUP OR ITS CONTRIBUTORS
|
|
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
! POSSIBILITY OF SUCH DAMAGE.
|
|
!
|
|
!
|
|
subroutine amg_d_as_smoother_apply(alpha,sm,x,beta,y,desc_data,trans,&
|
|
& sweeps,work,info,init,initu)
|
|
use psb_base_mod
|
|
use amg_d_as_smoother, amg_protect_nam => amg_d_as_smoother_apply
|
|
implicit none
|
|
type(psb_desc_type), intent(in) :: desc_data
|
|
class(amg_d_as_smoother_type), intent(inout) :: sm
|
|
real(psb_dpk_),intent(inout) :: x(:)
|
|
real(psb_dpk_),intent(inout) :: y(:)
|
|
real(psb_dpk_),intent(in) :: alpha,beta
|
|
character(len=1),intent(in) :: trans
|
|
integer(psb_ipk_), intent(in) :: sweeps
|
|
real(psb_dpk_),target, intent(inout) :: work(:)
|
|
integer(psb_ipk_), intent(out) :: info
|
|
character, intent(in), optional :: init
|
|
real(psb_dpk_),intent(inout), optional :: initu(:)
|
|
|
|
integer(psb_ipk_) :: n_row,n_col, nrow_d, i
|
|
real(psb_dpk_), pointer :: aux(:)
|
|
real(psb_dpk_), allocatable :: tx(:),ty(:), ww(:)
|
|
type(psb_ctxt_type) :: ctxt
|
|
integer(psb_ipk_) :: np, me, err_act,isz,int_err(5)
|
|
character :: trans_, init_
|
|
character(len=20) :: name='d_as_smoother_apply', ch_err
|
|
|
|
call psb_erractionsave(err_act)
|
|
|
|
info = psb_success_
|
|
ctxt = desc_data%get_context()
|
|
call psb_info(ctxt,me,np)
|
|
|
|
if (present(init)) then
|
|
init_ = psb_toupper(init)
|
|
else
|
|
init_='Z'
|
|
end if
|
|
|
|
trans_ = psb_toupper(trans)
|
|
select case(trans_)
|
|
case('N')
|
|
case('T')
|
|
case('C')
|
|
case default
|
|
call psb_errpush(psb_err_iarg_invalid_i_,name)
|
|
goto 9999
|
|
end select
|
|
|
|
if (.not.allocated(sm%sv)) then
|
|
info = 1121
|
|
call psb_errpush(info,name)
|
|
goto 9999
|
|
end if
|
|
|
|
|
|
n_row = sm%desc_data%get_local_rows()
|
|
n_col = sm%desc_data%get_local_cols()
|
|
nrow_d = desc_data%get_local_rows()
|
|
isz = max(n_row,N_COL)
|
|
|
|
if ((4*isz) <= size(work)) then
|
|
aux => work(1:)
|
|
else
|
|
allocate(aux(4*isz),stat=info)
|
|
if (info /= psb_success_) then
|
|
call psb_errpush(psb_err_alloc_request_,name,&
|
|
& i_err=(/4*isz,izero,izero,izero,izero/),&
|
|
& a_err='real(psb_dpk_)')
|
|
goto 9999
|
|
end if
|
|
endif
|
|
|
|
if ((.not.sm%sv%is_iterative()).and.(sweeps == 1).and.(sm%novr==0)) then
|
|
!
|
|
! Shortcut: in this case there is nothing else to be done.
|
|
!
|
|
call sm%sv%apply(alpha,x,beta,y,desc_data,trans_,aux,info)
|
|
|
|
if (info /= psb_success_) then
|
|
call psb_errpush(psb_err_internal_error_,name,&
|
|
& a_err='Error in sub_aply Jacobi Sweeps = 1')
|
|
goto 9999
|
|
endif
|
|
|
|
else if (sweeps >= 0) then
|
|
!
|
|
!
|
|
! Apply multiple sweeps of an AS solver
|
|
! to compute an approximate solution of a linear system.
|
|
!
|
|
!
|
|
call psb_geasb(tx,sm%desc_data,info)
|
|
call psb_geasb(ty,sm%desc_data,info)
|
|
call psb_geasb(ww,sm%desc_data,info)
|
|
|
|
!
|
|
! Unroll the first iteration and fold it inside SELECT CASE
|
|
! this will save one SPMM when INIT=Z, and will be
|
|
! significant when sweeps=1 (a common case)
|
|
!
|
|
call psb_geaxpby(done,x,dzero,tx,desc_data,info)
|
|
if (info == 0) call sm%apply_restr(tx,trans_,aux,info)
|
|
if (info == 0) call psb_geaxpby(done,tx,dzero,ww,sm%desc_data,info)
|
|
|
|
select case (init_)
|
|
case('Z')
|
|
call sm%sv%apply(done,ww,dzero,ty,sm%desc_data,trans_,aux,info,init='Z')
|
|
|
|
case('Y')
|
|
call psb_geaxpby(done,y,dzero,ty,desc_data,info)
|
|
if (info == 0) call sm%apply_restr(ty,trans_,aux,info)
|
|
if (info == 0) call psb_spmm(-done,sm%nd,ty,done,ww,sm%desc_data,info,&
|
|
& work=aux,trans=trans_)
|
|
call sm%sv%apply(done,ww,dzero,ty,desc_data,trans_,aux,info,init='Y')
|
|
|
|
case('U')
|
|
if (.not.present(initu)) then
|
|
call psb_errpush(psb_err_internal_error_,name,&
|
|
& a_err='missing initu to smoother_apply')
|
|
goto 9999
|
|
end if
|
|
call psb_geaxpby(done,initu,dzero,ty,desc_data,info)
|
|
if (info == 0) call sm%apply_restr(ty,trans_,aux,info)
|
|
if (info == 0) call psb_spmm(-done,sm%nd,ty,done,ww,sm%desc_data,info,&
|
|
& work=aux,trans=trans_)
|
|
call sm%sv%apply(done,ww,dzero,ty,desc_data,trans_,aux,info,init='Y')
|
|
|
|
case default
|
|
call psb_errpush(psb_err_internal_error_,name,&
|
|
& a_err='wrong init to smoother_apply')
|
|
goto 9999
|
|
end select
|
|
if (info == 0) call sm%apply_prol(ty,trans_,aux,info)
|
|
|
|
if (info /= psb_success_) then
|
|
call psb_errpush(psb_err_internal_error_,name,&
|
|
& a_err='Error in sub_aply Jacobi Sweeps = 1')
|
|
goto 9999
|
|
endif
|
|
|
|
do i=1, sweeps-1
|
|
!
|
|
! Compute Y(j+1) = D^(-1)*(X-ND*Y(j)), where D and ND are the
|
|
! block diagonal part and the remaining part of the local matrix
|
|
! and Y(j) is the approximate solution at sweep j.
|
|
!
|
|
if (info == 0) call psb_geaxpby(done,tx,dzero,ww,sm%desc_data,info)
|
|
if (info == 0) call psb_spmm(-done,sm%nd,ty,done,ww,sm%desc_data,info,&
|
|
& work=aux,trans=trans_)
|
|
|
|
if (info /= psb_success_) exit
|
|
|
|
call sm%sv%apply(done,ww,dzero,ty,sm%desc_data,trans_,aux,info,init='Y')
|
|
|
|
if (info /= psb_success_) exit
|
|
if (info == 0) call sm%apply_prol(ty,trans_,aux,info)
|
|
|
|
end do
|
|
|
|
if (info /= psb_success_) then
|
|
info=psb_err_internal_error_
|
|
call psb_errpush(info,name,&
|
|
& a_err='subsolve with Jacobi sweeps > 1')
|
|
goto 9999
|
|
end if
|
|
|
|
!
|
|
! Compute y = beta*y + alpha*ty (ty == K^(-1)*tx)
|
|
!
|
|
call psb_geaxpby(alpha,ty,beta,y,desc_data,info)
|
|
|
|
|
|
else
|
|
|
|
info = psb_err_iarg_neg_
|
|
call psb_errpush(info,name,&
|
|
& i_err=(/itwo,sweeps,izero,izero,izero/))
|
|
goto 9999
|
|
|
|
endif
|
|
|
|
|
|
if (.not.(4*isz <= size(work))) then
|
|
deallocate(aux,stat=info)
|
|
endif
|
|
if (info ==0) deallocate(ww,tx,ty,stat=info)
|
|
if (info /= 0) then
|
|
info = psb_err_alloc_dealloc_
|
|
call psb_errpush(info,name)
|
|
goto 9999
|
|
end if
|
|
|
|
call psb_erractionrestore(err_act)
|
|
return
|
|
|
|
9999 call psb_error_handler(err_act)
|
|
|
|
return
|
|
|
|
end subroutine amg_d_as_smoother_apply
|