350 lines
10 KiB
Fortran
350 lines
10 KiB
Fortran
!
|
|
!
|
|
! MLD2P4 version 2.2
|
|
! MultiLevel Domain Decomposition Parallel Preconditioners Package
|
|
! based on PSBLAS (Parallel Sparse BLAS version 3.5)
|
|
!
|
|
! (C) Copyright 2008-2018
|
|
!
|
|
! Salvatore Filippone
|
|
! Pasqua D'Ambra
|
|
! Daniela di Serafino
|
|
!
|
|
! Redistribution and use in source and binary forms, with or without
|
|
! modification, are permitted provided that the following conditions
|
|
! are met:
|
|
! 1. Redistributions of source code must retain the above copyright
|
|
! notice, this list of conditions and the following disclaimer.
|
|
! 2. Redistributions in binary form must reproduce the above copyright
|
|
! notice, this list of conditions, and the following disclaimer in the
|
|
! documentation and/or other materials provided with the distribution.
|
|
! 3. The name of the MLD2P4 group or the names of its contributors may
|
|
! not be used to endorse or promote products derived from this
|
|
! software without specific written permission.
|
|
!
|
|
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
|
|
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
! POSSIBILITY OF SUCH DAMAGE.
|
|
!
|
|
!
|
|
!
|
|
! File: mld_c_soc1_map__bld.f90
|
|
!
|
|
! Subroutine: mld_c_soc1_map_bld
|
|
! Version: complex
|
|
!
|
|
! This routine builds the tentative prolongator based on the
|
|
! strength of connection aggregation algorithm presented in
|
|
!
|
|
! M. Brezina and P. Vanek, A black-box iterative solver based on a
|
|
! two-level Schwarz method, Computing, 63 (1999), 233-263.
|
|
! P. Vanek, J. Mandel and M. Brezina, Algebraic Multigrid by Smoothed
|
|
! Aggregation for Second and Fourth Order Elliptic Problems, Computing, 56
|
|
! (1996), 179-196.
|
|
!
|
|
! Note: upon exit
|
|
!
|
|
! Arguments:
|
|
! a - type(psb_cspmat_type).
|
|
! The sparse matrix structure containing the local part of the
|
|
! matrix to be preconditioned.
|
|
! desc_a - type(psb_desc_type), input.
|
|
! The communication descriptor of a.
|
|
! p - type(mld_cprec_type), input/output.
|
|
! The preconditioner data structure; upon exit it contains
|
|
! the multilevel hierarchy of prolongators, restrictors
|
|
! and coarse matrices.
|
|
! info - integer, output.
|
|
! Error code.
|
|
!
|
|
!
|
|
!
|
|
subroutine mld_c_soc1_map_bld(iorder,theta,clean_zeros,a,desc_a,nlaggr,ilaggr,info)
|
|
|
|
use psb_base_mod
|
|
use mld_base_prec_type
|
|
use mld_c_inner_mod
|
|
|
|
implicit none
|
|
|
|
! Arguments
|
|
integer(psb_ipk_), intent(in) :: iorder
|
|
logical, intent(in) :: clean_zeros
|
|
type(psb_cspmat_type), intent(in) :: a
|
|
type(psb_desc_type), intent(in) :: desc_a
|
|
real(psb_spk_), intent(in) :: theta
|
|
integer(psb_lpk_), allocatable, intent(out) :: ilaggr(:),nlaggr(:)
|
|
integer(psb_ipk_), intent(out) :: info
|
|
|
|
! Local variables
|
|
integer(psb_ipk_), allocatable :: ils(:), neigh(:), irow(:), icol(:),&
|
|
& ideg(:), idxs(:)
|
|
integer(psb_lpk_), allocatable :: tmpaggr(:)
|
|
complex(psb_spk_), allocatable :: val(:), diag(:)
|
|
integer(psb_ipk_) :: icnt,nlp,k,n,ia,isz,nr, nc, naggr,i,j,m, nz, ilg, ii, ip
|
|
type(psb_c_csr_sparse_mat) :: acsr
|
|
real(psb_spk_) :: cpling, tcl
|
|
logical :: disjoint
|
|
integer(psb_ipk_) :: debug_level, debug_unit,err_act
|
|
integer(psb_ipk_) :: ictxt,np,me
|
|
integer(psb_ipk_) :: nrow, ncol, n_ne
|
|
integer(psb_lpk_) :: nrglob
|
|
character(len=20) :: name, ch_err
|
|
|
|
info=psb_success_
|
|
name = 'mld_soc1_map_bld'
|
|
call psb_erractionsave(err_act)
|
|
if (psb_errstatus_fatal()) then
|
|
info = psb_err_internal_error_; goto 9999
|
|
end if
|
|
debug_unit = psb_get_debug_unit()
|
|
debug_level = psb_get_debug_level()
|
|
!
|
|
ictxt=desc_a%get_context()
|
|
call psb_info(ictxt,me,np)
|
|
nrow = desc_a%get_local_rows()
|
|
ncol = desc_a%get_local_cols()
|
|
nrglob = desc_a%get_global_rows()
|
|
|
|
nr = a%get_nrows()
|
|
nc = a%get_ncols()
|
|
allocate(ilaggr(nr),neigh(nr),ideg(nr),idxs(nr),&
|
|
& icol(nc),val(nc),stat=info)
|
|
if(info /= psb_success_) then
|
|
info=psb_err_alloc_request_
|
|
call psb_errpush(info,name,i_err=(/2*nr,izero,izero,izero,izero/),&
|
|
& a_err='integer')
|
|
goto 9999
|
|
end if
|
|
|
|
diag = a%get_diag(info)
|
|
if(info /= psb_success_) then
|
|
info=psb_err_from_subroutine_
|
|
call psb_errpush(info,name,a_err='psb_sp_getdiag')
|
|
goto 9999
|
|
end if
|
|
|
|
call a%cp_to(acsr)
|
|
if (clean_zeros) call acsr%clean_zeros(info)
|
|
if (iorder == mld_aggr_ord_nat_) then
|
|
do i=1, nr
|
|
ilaggr(i) = -(nr+1)
|
|
idxs(i) = i
|
|
end do
|
|
else
|
|
do i=1, nr
|
|
ilaggr(i) = -(nr+1)
|
|
ideg(i) = acsr%irp(i+1) - acsr%irp(i)
|
|
end do
|
|
call psb_msort(ideg,ix=idxs,dir=psb_sort_down_)
|
|
end if
|
|
|
|
|
|
!
|
|
! Phase one: Start with disjoint groups.
|
|
!
|
|
naggr = 0
|
|
icnt = 0
|
|
step1: do ii=1, nr
|
|
i = idxs(ii)
|
|
if ((i<1).or.(i>nr)) then
|
|
info=psb_err_internal_error_
|
|
call psb_errpush(info,name)
|
|
goto 9999
|
|
end if
|
|
|
|
if (ilaggr(i) == -(nr+1)) then
|
|
nz = (acsr%irp(i+1)-acsr%irp(i))
|
|
if ((nz<0).or.(nz>size(icol))) then
|
|
info=psb_err_internal_error_
|
|
call psb_errpush(info,name)
|
|
goto 9999
|
|
end if
|
|
|
|
icol(1:nz) = acsr%ja(acsr%irp(i):acsr%irp(i+1)-1)
|
|
val(1:nz) = acsr%val(acsr%irp(i):acsr%irp(i+1)-1)
|
|
|
|
!
|
|
! Build the set of all strongly coupled nodes
|
|
!
|
|
ip = 0
|
|
do k=1, nz
|
|
j = icol(k)
|
|
if ((1<=j).and.(j<=nr)) then
|
|
if (abs(val(k)) > theta*sqrt(abs(diag(i)*diag(j)))) then
|
|
ip = ip + 1
|
|
icol(ip) = icol(k)
|
|
end if
|
|
end if
|
|
enddo
|
|
|
|
!
|
|
! If the whole strongly coupled neighborhood of I is
|
|
! as yet unconnected, turn it into the next aggregate.
|
|
! Same if ip==0 (in which case, neighborhood only
|
|
! contains I even if it does not look like it from matrix)
|
|
!
|
|
disjoint = all(ilaggr(icol(1:ip)) == -(nr+1)).or.(ip==0)
|
|
if (disjoint) then
|
|
icnt = icnt + 1
|
|
naggr = naggr + 1
|
|
do k=1, ip
|
|
ilaggr(icol(k)) = naggr
|
|
end do
|
|
ilaggr(i) = naggr
|
|
end if
|
|
endif
|
|
enddo step1
|
|
|
|
if (debug_level >= psb_debug_outer_) then
|
|
write(debug_unit,*) me,' ',trim(name),&
|
|
& ' Check 1:',count(ilaggr == -(nr+1))
|
|
end if
|
|
|
|
!
|
|
! Phase two: join the neighbours
|
|
!
|
|
tmpaggr = ilaggr
|
|
step2: do ii=1,nr
|
|
i = idxs(ii)
|
|
|
|
if (ilaggr(i) == -(nr+1)) then
|
|
nz = (acsr%irp(i+1)-acsr%irp(i))
|
|
if (nz == 1) cycle step2
|
|
icol(1:nz) = acsr%ja(acsr%irp(i):acsr%irp(i+1)-1)
|
|
val(1:nz) = acsr%val(acsr%irp(i):acsr%irp(i+1)-1)
|
|
|
|
!
|
|
! Find the most strongly connected neighbour that is
|
|
! already aggregated, if any, and join its aggregate
|
|
!
|
|
cpling = szero
|
|
ip = 0
|
|
do k=1, nz
|
|
j = icol(k)
|
|
if ((1<=j).and.(j<=nr)) then
|
|
if ((abs(val(k)) > theta*sqrt(abs(diag(i)*diag(j))))&
|
|
& .and. (tmpaggr(j) > 0).and. (abs(val(k)) > cpling)) then
|
|
ip = k
|
|
cpling = abs(val(k))
|
|
end if
|
|
end if
|
|
enddo
|
|
if (ip > 0) then
|
|
ilaggr(i) = ilaggr(icol(ip))
|
|
end if
|
|
end if
|
|
end do step2
|
|
|
|
|
|
!
|
|
! Phase three: sweep over leftovers, if any
|
|
!
|
|
step3: do ii=1,nr
|
|
i = idxs(ii)
|
|
|
|
if (ilaggr(i) < 0) then
|
|
nz = (acsr%irp(i+1)-acsr%irp(i))
|
|
if (nz == 1) cycle step3
|
|
icol(1:nz) = acsr%ja(acsr%irp(i):acsr%irp(i+1)-1)
|
|
val(1:nz) = acsr%val(acsr%irp(i):acsr%irp(i+1)-1)
|
|
!
|
|
! Find its strongly connected neighbourhood not
|
|
! already aggregated, and make it into a new aggregate.
|
|
!
|
|
cpling = szero
|
|
ip = 0
|
|
do k=1, nz
|
|
j = icol(k)
|
|
if ((1<=j).and.(j<=nr)) then
|
|
if ((abs(val(k)) > theta*sqrt(abs(diag(i)*diag(j))))&
|
|
& .and. (ilaggr(j) < 0)) then
|
|
ip = ip + 1
|
|
icol(ip) = icol(k)
|
|
end if
|
|
end if
|
|
enddo
|
|
if (ip > 0) then
|
|
icnt = icnt + 1
|
|
naggr = naggr + 1
|
|
ilaggr(i) = naggr
|
|
do k=1, ip
|
|
ilaggr(icol(k)) = naggr
|
|
end do
|
|
else
|
|
!
|
|
! This should not happen: we did not even connect with ourselves,
|
|
! but it's not a singleton.
|
|
!
|
|
naggr = naggr + 1
|
|
ilaggr(i) = naggr
|
|
end if
|
|
end if
|
|
end do step3
|
|
|
|
! Any leftovers?
|
|
do i=1, nr
|
|
if (ilaggr(i) < 0) then
|
|
nz = (acsr%irp(i+1)-acsr%irp(i))
|
|
if (nz == 1) then
|
|
! Mark explicitly as a singleton so that
|
|
! it will be ignored in map_to_tprol.
|
|
! Need to use -(nrglob+nr) to make sure
|
|
! it's still negative when shifted and combined with
|
|
! other processes.
|
|
ilaggr(i) = -(nrglob+nr)
|
|
else
|
|
info=psb_err_internal_error_
|
|
call psb_errpush(info,name,a_err='Fatal error: non-singleton leftovers')
|
|
goto 9999
|
|
endif
|
|
end if
|
|
end do
|
|
|
|
if (naggr > ncol) then
|
|
!write(0,*) name,'Error : naggr > ncol',naggr,ncol
|
|
info=psb_err_internal_error_
|
|
call psb_errpush(info,name,a_err='Fatal error: naggr>ncol')
|
|
goto 9999
|
|
end if
|
|
|
|
call psb_realloc(ncol,ilaggr,info)
|
|
if (info /= psb_success_) then
|
|
info=psb_err_from_subroutine_
|
|
ch_err='psb_realloc'
|
|
call psb_errpush(info,name,a_err=ch_err)
|
|
goto 9999
|
|
end if
|
|
|
|
allocate(nlaggr(np),stat=info)
|
|
if (info /= psb_success_) then
|
|
info=psb_err_alloc_request_
|
|
call psb_errpush(info,name,i_err=(/np,izero,izero,izero,izero/),&
|
|
& a_err='integer')
|
|
goto 9999
|
|
end if
|
|
|
|
nlaggr(:) = 0
|
|
nlaggr(me+1) = naggr
|
|
call psb_sum(ictxt,nlaggr(1:np))
|
|
|
|
call acsr%free()
|
|
|
|
call psb_erractionrestore(err_act)
|
|
return
|
|
|
|
9999 call psb_error_handler(err_act)
|
|
|
|
return
|
|
|
|
end subroutine mld_c_soc1_map_bld
|
|
|