You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
amg4psblas/amgprec/impl/aggregator/amg_caggrmat_minnrg_bld.f90

659 lines
22 KiB
Fortran

!
!
! AMG4PSBLAS version 1.0
! Algebraic Multigrid Package
! based on PSBLAS (Parallel Sparse BLAS version 3.7)
!
! (C) Copyright 2021
!
! Salvatore Filippone
! Pasqua D'Ambra
! Fabio Durastante
!
! Redistribution and use in source and binary forms, with or without
! modification, are permitted provided that the following conditions
! are met:
! 1. Redistributions of source code must retain the above copyright
! notice, this list of conditions and the following disclaimer.
! 2. Redistributions in binary form must reproduce the above copyright
! notice, this list of conditions, and the following disclaimer in the
! documentation and/or other materials provided with the distribution.
! 3. The name of the AMG4PSBLAS group or the names of its contributors may
! not be used to endorse or promote products derived from this
! software without specific written permission.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AMG4PSBLAS GROUP OR ITS CONTRIBUTORS
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
! POSSIBILITY OF SUCH DAMAGE.
!
!
! File: amg_caggrmat_minnrg_bld.F90
!
! Subroutine: amg_caggrmat_minnrg_bld
! Version: complex
!
! This routine builds a coarse-level matrix A_C from a fine-level matrix A
! by using the Galerkin approach, i.e.
!
! A_C = P_C^T A P_C,
!
! where P_C is a prolongator from the coarse level to the fine one.
!
! The prolongator P_C is built according to a smoothed aggregation algorithm,
! i.e. it is obtained by applying a damped Jacobi smoother to the piecewise
! constant interpolation operator P corresponding to the fine-to-coarse level
! mapping built by the amg_aggrmap_bld subroutine:
!
! P_C = (I - omega*D^(-1)A) * P,
!
! where D is the diagonal matrix with main diagonal equal to the main diagonal
! of A, and omega is a suitable smoothing parameter. An estimate of the spectral
! radius of D^(-1)A, to be used in the computation of omega, is provided,
! according to the value of p%parms%aggr_omega_alg, specified by the user
! through amg_cprecinit and amg_cprecset.
! 4. Minimum energy aggregation:
! M. Sala, R. Tuminaro: A new Petrov-Galerkin smoothed aggregation preconditioner
! for nonsymmetric linear systems, SIAM J. Sci. Comput., 31(1):143-166 (2008)
!
! On output from this routine the entries of AC, op_prol, op_restr
! are still in "global numbering" mode; this is fixed in the calling routine
! aggregator%mat_bld.
!
!
! Arguments:
! a - type(psb_cspmat_type), input.
! The sparse matrix structure containing the local part of
! the fine-level matrix.
! desc_a - type(psb_desc_type), input.
! The communication descriptor of the fine-level matrix.
! p - type(amg_c_onelev_type), input/output.
! The 'one-level' data structure that will contain the local
! part of the matrix to be built as well as the information
! concerning the prolongator and its transpose.
! parms - type(amg_sml_parms), input
! Parameters controlling the choice of algorithm
! ac - type(psb_cspmat_type), output
! The coarse matrix on output
!
! ilaggr - integer, dimension(:), input
! The mapping between the row indices of the coarse-level
! matrix and the row indices of the fine-level matrix.
! ilaggr(i)=j means that node i in the adjacency graph
! of the fine-level matrix is mapped onto node j in the
! adjacency graph of the coarse-level matrix. Note that the indices
! are assumed to be shifted so as to make sure the ranges on
! the various processes do not overlap.
! nlaggr - integer, dimension(:) input
! nlaggr(i) contains the aggregates held by process i.
! op_prol - type(psb_cspmat_type), input/output
! The tentative prolongator on input, the computed prolongator on output
!
! op_restr - type(psb_cspmat_type), output
! The restrictor operator; in this particular case, it is different
! from the transpose of the prolongator.
!
! info - integer, output.
! Error code.
!
!
subroutine amg_caggrmat_minnrg_bld(a,desc_a,ilaggr,nlaggr,parms,&
& ac,desc_ac,op_prol,op_restr,t_prol,info)
use psb_base_mod
use amg_base_prec_type
use amg_c_inner_mod, amg_protect_name => amg_caggrmat_minnrg_bld
implicit none
! Arguments
type(psb_cspmat_type), intent(in) :: a
type(psb_desc_type), intent(inout) :: desc_a
integer(psb_lpk_), intent(inout) :: ilaggr(:), nlaggr(:)
type(amg_sml_parms), intent(inout) :: parms
type(psb_lcspmat_type), intent(inout) :: t_prol
type(psb_cspmat_type), intent(inout) :: op_prol, ac,op_restr
type(psb_desc_type), intent(inout) :: desc_ac
integer(psb_ipk_), intent(out) :: info
! Local variables
integer(psb_lpk_) :: nrow, nglob, ncol, ntaggr, nzac, ip, ndx,&
& naggr, nzl,naggrm1,naggrp1, i, j, k, jd, icolF, nrt
type(psb_ctxt_type) :: ctxt
integer(psb_ipk_) :: np, me, icomm
character(len=20) :: name
type(psb_lcspmat_type) :: la, af, ptilde, rtilde, atran, atp, atdatp
type(psb_lcspmat_type) :: am3,am4, ap, adap,atmp,rada, ra, atmp2, dap, dadap, da
type(psb_lcspmat_type) :: dat, datp, datdatp, atmp3, tmp_prol
type(psb_lc_coo_sparse_mat) :: tmpcoo
type(psb_lc_csr_sparse_mat) :: acsr1, acsr2, acsr3, acsr, acsrf
type(psb_lc_csc_sparse_mat) :: csc_dap, csc_dadap, csc_datp, csc_datdatp, acsc
complex(psb_spk_), allocatable :: adiag(:), adinv(:)
complex(psb_spk_), allocatable :: omf(:), omp(:), omi(:), oden(:)
logical :: filter_mat
integer(psb_ipk_) :: ierr(5)
integer(psb_ipk_) :: debug_level, debug_unit, err_act
integer(psb_ipk_), parameter :: ncmax=16
real(psb_spk_) :: anorm, theta
complex(psb_spk_) :: tmp, alpha, beta, ommx
name='amg_aggrmat_minnrg'
info=psb_success_
call psb_erractionsave(err_act)
if (psb_errstatus_fatal()) then
info = psb_err_internal_error_; goto 9999
end if
debug_unit = psb_get_debug_unit()
debug_level = psb_get_debug_level()
ctxt = desc_a%get_context()
icomm = desc_a%get_mpic()
call psb_info(ctxt, me, np)
nglob = desc_a%get_global_rows()
nrow = desc_a%get_local_rows()
ncol = desc_a%get_local_cols()
theta = parms%aggr_thresh
naggr = nlaggr(me+1)
ntaggr = sum(nlaggr)
naggrm1 = sum(nlaggr(1:me))
naggrp1 = sum(nlaggr(1:me+1))
filter_mat = (parms%aggr_filter == amg_filter_mat_)
!NEEDS TO BE REWORKED !!
! naggr: number of local aggregates
! nrow: local rows.
!
allocate(adinv(ncol),&
& omf(ncol),omp(ntaggr),oden(ntaggr),omi(ncol),stat=info)
if (info /= psb_success_) then
info=psb_err_alloc_request_; ierr(1)=6*ncol+ntaggr;
call psb_errpush(info,name,i_err=ierr,a_err='complex(psb_spk_)')
goto 9999
end if
!!$ ! Get the diagonal D
!!$ adiag = a%get_diag(info)
!!$ if (info == psb_success_) &
!!$ & call psb_realloc(ncol,adiag,info)
!!$ if (info == psb_success_) &
!!$ & call psb_halo(adiag,desc_a,info)
!!$ if (info == psb_success_) call a%cp_to_l(la)
!!$ if (info /= psb_success_) then
!!$ call psb_errpush(psb_err_from_subroutine_,name,a_err='sp_getdiag')
!!$ goto 9999
!!$ end if
!!$
!!$ do i=1,size(adiag)
!!$ if (adiag(i) /= czero) then
!!$ adinv(i) = cone / adiag(i)
!!$ else
!!$ adinv(i) = cone
!!$ end if
!!$ end do
!!$
!!$
!!$
!!$ ! 1. Allocate Ptilde in sparse matrix form
!!$ call op_prol%mv_to(tmpcoo)
!!$ call ptilde%mv_from(tmpcoo)
!!$ call ptilde%cscnv(info,type='csr')
!!$
!!$ if (info == psb_success_) call la%cscnv(am3,info,type='csr',dupl=psb_dupl_add_)
!!$ if (info == psb_success_) call la%cscnv(da,info,type='csr',dupl=psb_dupl_add_)
!!$ if (info /= psb_success_) then
!!$ call psb_errpush(psb_err_from_subroutine_,name,a_err='spcnv')
!!$ goto 9999
!!$ end if
!!$ if (debug_level >= psb_debug_outer_) &
!!$ & write(debug_unit,*) me,' ',trim(name),&
!!$ & ' Initial copies done.'
!!$
!!$ call da%scal(adinv,info)
!!$
!!$ call psb_spspmm(da,ptilde,dap,info)
!!$
!!$ if(info /= psb_success_) then
!!$ call psb_errpush(psb_err_from_subroutine_,name,a_err='spspmm 1')
!!$ goto 9999
!!$ end if
!!$
!!$ call dap%clone(atmp,info)
!!$
!!$ call psb_sphalo(atmp,desc_a,am4,info,&
!!$ & colcnv=.false.,rowscale=.true.,outfmt='CSR ')
!!$ if (info == psb_success_) call psb_rwextd(ncol,atmp,info,b=am4)
!!$ if (info == psb_success_) call am4%free()
!!$
!!$ call psb_spspmm(da,atmp,dadap,info)
!!$ call atmp%free()
!!$
!!$ ! !$ write(0,*) 'Columns of AP',psb_sp_get_ncols(ap)
!!$ ! !$ write(0,*) 'Columns of ADAP',psb_sp_get_ncols(adap)
!!$ call dap%mv_to(csc_dap)
!!$ call dadap%mv_to(csc_dadap)
!!$
!!$ call csc_mat_col_prod(csc_dap,csc_dadap,omp,info)
!!$ call csc_mat_col_prod(csc_dadap,csc_dadap,oden,info)
!!$ call psb_sum(ctxt,omp)
!!$ call psb_sum(ctxt,oden)
!!$ ! !$ write(0,*) trim(name),' OMP :',omp
!!$ ! !$ write(0,*) trim(name),' ODEN:',oden
!!$
!!$ omp = omp/oden
!!$
!!$ ! !$ write(0,*) 'Check on output prolongator ',omp(1:min(size(omp),10))
!!$ if (debug_level >= psb_debug_outer_) &
!!$ & write(debug_unit,*) me,' ',trim(name),&
!!$ & 'Done NUMBMM 1'
!!$
!!$ call am3%mv_to(acsr3)
!!$ ! Compute omega_int
!!$ ommx = czero
!!$ do i=1, ncol
!!$ if (ilaggr(i) >0) then
!!$ omi(i) = omp(ilaggr(i))
!!$ else
!!$ omi(i) = czero
!!$ end if
!!$ if(abs(omi(i)) .gt. abs(ommx)) ommx = omi(i)
!!$ end do
!!$ ! Compute omega_fine
!!$ do i=1, nrow
!!$ omf(i) = ommx
!!$ do j=acsr3%irp(i),acsr3%irp(i+1)-1
!!$ if(abs(omi(acsr3%ja(j))) .lt. abs(omf(i))) omf(i)=omi(acsr3%ja(j))
!!$ end do
!!$ ! ! if(min(real(omf(i)),aimag(omf(i))) < szero) omf(i) = czero
!!$ if(psb_minreal(omf(i)) < szero) omf(i) = czero
!!$ end do
!!$
!!$ omf(1:nrow) = omf(1:nrow) * adinv(1:nrow)
!!$
!!$ if (filter_mat) then
!!$ !
!!$ ! Build the filtered matrix Af from A
!!$ !
!!$ call la%cscnv(acsrf,info,dupl=psb_dupl_add_)
!!$
!!$ do i=1,nrow
!!$ tmp = czero
!!$ jd = -1
!!$ do j=acsrf%irp(i),acsrf%irp(i+1)-1
!!$ if (acsrf%ja(j) == i) jd = j
!!$ if (abs(acsrf%val(j)) < theta*sqrt(abs(adiag(i)*adiag(acsrf%ja(j))))) then
!!$ tmp=tmp+acsrf%val(j)
!!$ acsrf%val(j)=czero
!!$ endif
!!$ enddo
!!$ if (jd == -1) then
!!$ write(0,*) name,': Warning: there is no diagonal element', i
!!$ else
!!$ acsrf%val(jd)=acsrf%val(jd)-tmp
!!$ end if
!!$ enddo
!!$ ! Take out zeroed terms
!!$ call acsrf%clean_zeros(info)
!!$
!!$ !
!!$ ! Build the smoothed prolongator using the filtered matrix
!!$ !
!!$ do i=1,acsrf%get_nrows()
!!$ do j=acsrf%irp(i),acsrf%irp(i+1)-1
!!$ if (acsrf%ja(j) == i) then
!!$ acsrf%val(j) = cone - omf(i)*acsrf%val(j)
!!$ else
!!$ acsrf%val(j) = - omf(i)*acsrf%val(j)
!!$ end if
!!$ end do
!!$ end do
!!$
!!$ if (debug_level >= psb_debug_outer_) &
!!$ & write(debug_unit,*) me,' ',trim(name),&
!!$ & 'Done gather, going for SYMBMM 1'
!!$
!!$ call af%mv_from(acsrf)
!!$ !
!!$ ! op_prol = (I-w*D*Af)Ptilde
!!$ ! Doing it this way means to consider diag(Af_i)
!!$ !
!!$ !
!!$ call psb_spspmm(af,ptilde,op_prol,info)
!!$ if (debug_level >= psb_debug_outer_) &
!!$ & write(debug_unit,*) me,' ',trim(name),&
!!$ & 'Done SPSPMM 1'
!!$ else
!!$ !
!!$ ! Build the smoothed prolongator using the original matrix
!!$ !
!!$ do i=1,acsr3%get_nrows()
!!$ do j=acsr3%irp(i),acsr3%irp(i+1)-1
!!$ if (acsr3%ja(j) == i) then
!!$ acsr3%val(j) = cone - omf(i)*acsr3%val(j)
!!$ else
!!$ acsr3%val(j) = - omf(i)*acsr3%val(j)
!!$ end if
!!$ end do
!!$ end do
!!$
!!$ call am3%mv_from(acsr3)
!!$ if (debug_level >= psb_debug_outer_) &
!!$ & write(debug_unit,*) me,' ',trim(name),&
!!$ & 'Done gather, going for SYMBMM 1'
!!$ !
!!$ !
!!$ ! op_prol = (I-w*D*A)Ptilde
!!$ !
!!$ !
!!$ call psb_spspmm(am3,ptilde,op_prol,info)
!!$ if (debug_level >= psb_debug_outer_) &
!!$ & write(debug_unit,*) me,' ',trim(name),&
!!$ & 'Done NUMBMM 1'
!!$
!!$ end if
!!$
!!$
!!$ !
!!$ ! Ok, let's start over with the restrictor
!!$ !
!!$ call ptilde%transc(rtilde)
!!$ call la%cscnv(atmp,info,type='csr')
!!$ call psb_sphalo(atmp,desc_a,am4,info,&
!!$ & colcnv=.true.,rowscale=.true.)
!!$ nrt = am4%get_nrows()
!!$ call am4%csclip(atmp2,info,lone,nrt,lone,ncol)
!!$ call atmp2%cscnv(info,type='CSR')
!!$ if (info == psb_success_) call psb_rwextd(ncol,atmp,info,b=atmp2)
!!$ call am4%free()
!!$ call atmp2%free()
!!$
!!$ ! This is to compute the transpose. It ONLY works if the
!!$ ! original A has a symmetric pattern.
!!$ call atmp%transc(atmp2)
!!$ call atmp2%csclip(dat,info,lone,nrow,lone,ncol)
!!$ call dat%cscnv(info,type='csr')
!!$ call dat%scal(adinv,info)
!!$
!!$ ! Now for the product.
!!$ call psb_spspmm(dat,ptilde,datp,info)
!!$
!!$ call datp%clone(atmp2,info)
!!$ call psb_sphalo(atmp2,desc_a,am4,info,&
!!$ & colcnv=.false.,rowscale=.true.,outfmt='CSR ')
!!$ if (info == psb_success_) call psb_rwextd(ncol,atmp2,info,b=am4)
!!$ if (info == psb_success_) call am4%free()
!!$
!!$
!!$ call psb_symbmm(dat,atmp2,datdatp,info)
!!$ call psb_numbmm(dat,atmp2,datdatp)
!!$ call atmp2%free()
!!$
!!$ call datp%mv_to(csc_datp)
!!$ call datdatp%mv_to(csc_datdatp)
!!$
!!$ call csc_mat_col_prod(csc_datp,csc_datdatp,omp,info)
!!$ call csc_mat_col_prod(csc_datdatp,csc_datdatp,oden,info)
!!$ call psb_sum(ctxt,omp)
!!$ call psb_sum(ctxt,oden)
!!$
!!$
!!$ ! !$ write(debug_unit,*) trim(name),' OMP_R :',omp
!!$ ! ! $ write(debug_unit,*) trim(name),' ODEN_R:',oden
!!$ omp = omp/oden
!!$ ! !$ write(0,*) 'Check on output restrictor',omp(1:min(size(omp),10))
!!$ ! Compute omega_int
!!$ ommx = czero
!!$ do i=1, ncol
!!$ if (ilaggr(i) >0) then
!!$ omi(i) = omp(ilaggr(i))
!!$ else
!!$ omi(i) = czero
!!$ end if
!!$ if(abs(omi(i)) .gt. abs(ommx)) ommx = omi(i)
!!$ end do
!!$ ! Compute omega_fine
!!$ ! Going over the columns of atmp means going over the rows
!!$ ! of A^T. Hopefully ;-)
!!$ call atmp%cp_to(acsc)
!!$
!!$ do i=1, nrow
!!$ omf(i) = ommx
!!$ do j= acsc%icp(i),acsc%icp(i+1)-1
!!$ if(abs(omi(acsc%ia(j))) .lt. abs(omf(i))) omf(i)=omi(acsc%ia(j))
!!$ end do
!!$ ! ! if(min(real(omf(i)),aimag(omf(i))) < szero) omf(i) = czero
!!$ if(psb_minreal(omf(i)) < szero) omf(i) = czero
!!$ end do
!!$ omf(1:nrow) = omf(1:nrow)*adinv(1:nrow)
!!$ call psb_halo(omf,desc_a,info)
!!$ call acsc%free()
!!$
!!$
!!$ call atmp%mv_to(acsr1)
!!$
!!$ do i=1,acsr1%get_nrows()
!!$ do j=acsr1%irp(i),acsr1%irp(i+1)-1
!!$ if (acsr1%ja(j) == i) then
!!$ acsr1%val(j) = cone - acsr1%val(j)*omf(acsr1%ja(j))
!!$ else
!!$ acsr1%val(j) = - acsr1%val(j)*omf(acsr1%ja(j))
!!$ end if
!!$ end do
!!$ end do
!!$ call atmp%mv_from(acsr1)
!!$
!!$ call rtilde%mv_to(tmpcoo)
!!$ nzl = tmpcoo%get_nzeros()
!!$ i=0
!!$ do k=1, nzl
!!$ if ((naggrm1 < tmpcoo%ia(k)) .and. (tmpcoo%ia(k) <= naggrp1)) then
!!$ i = i+1
!!$ tmpcoo%val(i) = tmpcoo%val(k)
!!$ tmpcoo%ia(i) = tmpcoo%ia(k)
!!$ tmpcoo%ja(i) = tmpcoo%ja(k)
!!$ end if
!!$ end do
!!$ call tmpcoo%set_nzeros(i)
!!$ call rtilde%mv_from(tmpcoo)
!!$ call rtilde%cscnv(info,type='csr')
!!$
!!$ call psb_spspmm(rtilde,atmp,op_restr,info)
!!$
!!$ !
!!$ ! Now we have to gather the halo of op_prol, and add it to itself
!!$ ! to multiply it by A,
!!$ !
!!$ call op_prol%clone(tmp_prol,info)
!!$ if (info == psb_success_) call psb_sphalo(tmp_prol,desc_a,am4,info,&
!!$ & colcnv=.false.,rowscale=.true.)
!!$ if (info == psb_success_) call psb_rwextd(ncol,tmp_prol,info,b=am4)
!!$ if (info == psb_success_) call am4%free()
!!$
!!$ if(info /= psb_success_) then
!!$ call psb_errpush(psb_err_internal_error_,name,a_err='Halo of op_prol')
!!$ goto 9999
!!$ end if
!!$
!!$ !
!!$ ! Now we have to fix this. The only rows of B that are correct
!!$ ! are those corresponding to "local" aggregates, i.e. indices in ilaggr(:)
!!$ !
!!$ call op_restr%mv_to(tmpcoo)
!!$
!!$ nzl = tmpcoo%get_nzeros()
!!$ i=0
!!$ do k=1, nzl
!!$ if ((naggrm1 < tmpcoo%ia(k)) .and. (tmpcoo%ia(k) <= naggrp1)) then
!!$ i = i+1
!!$ tmpcoo%val(i) = tmpcoo%val(k)
!!$ tmpcoo%ia(i) = tmpcoo%ia(k)
!!$ tmpcoo%ja(i) = tmpcoo%ja(k)
!!$ end if
!!$ end do
!!$ call tmpcoo%set_nzeros(i)
!!$ call op_restr%mv_from(tmpcoo)
!!$ call op_restr%cscnv(info,type='csr')
!!$
!!$
!!$ if (debug_level >= psb_debug_outer_) &
!!$ & write(debug_unit,*) me,' ',trim(name),&
!!$ & 'starting sphalo/ rwxtd'
!!$
!!$ call psb_spspmm(la,tmp_prol,am3,info)
!!$ if (debug_level >= psb_debug_outer_) &
!!$ & write(debug_unit,*) me,' ',trim(name),&
!!$ & 'Done SPSPMM 2'
!!$
!!$ call psb_sphalo(am3,desc_a,am4,info,&
!!$ & colcnv=.false.,rowscale=.true.)
!!$ if (info == psb_success_) call psb_rwextd(ncol,am3,info,b=am4)
!!$ if (info == psb_success_) call am4%free()
!!$
!!$ if(info /= psb_success_) then
!!$ call psb_errpush(psb_err_internal_error_,name,&
!!$ & a_err='Extend am3')
!!$ goto 9999
!!$ end if
!!$ if (debug_level >= psb_debug_outer_) &
!!$ & write(debug_unit,*) me,' ',trim(name),&
!!$ & 'Done sphalo/ rwxtd'
!!$
!!$ call psb_spspmm(op_restr,am3,ac,info)
!!$ if (info == psb_success_) call am3%free()
!!$ if (info == psb_success_) call ac%cscnv(info,type='coo',dupl=psb_dupl_add_)
!!$
!!$ if (info /= psb_success_) then
!!$ call psb_errpush(psb_err_internal_error_,name,&
!!$ &a_err='Build ac = op_restr x am3')
!!$ goto 9999
!!$ end if
if (debug_level >= psb_debug_outer_) &
& write(debug_unit,*) me,' ',trim(name),&
& 'Done smooth_aggregate '
call psb_erractionrestore(err_act)
return
9999 continue
call psb_errpush(info,name)
call psb_error_handler(err_act)
return
contains
subroutine csc_mat_col_prod(a,b,v,info)
implicit none
type(psb_lc_csc_sparse_mat), intent(in) :: a, b
complex(psb_spk_), intent(out) :: v(:)
integer(psb_ipk_), intent(out) :: info
integer(psb_lpk_) :: i,j,k, nr, nc,iap,nra,ibp,nrb
info = psb_success_
nc = a%get_ncols()
if (nc /= b%get_ncols()) then
write(0,*) 'Matrices A and B should have same columns'
info = -1
return
end if
do j=1, nc
iap = a%icp(j)
nra = a%icp(j+1)-iap
ibp = b%icp(j)
nrb = b%icp(j+1)-ibp
v(j) = sparse_srtd_dot(nra,a%ia(iap:iap+nra-1),a%val(iap:iap+nra-1),&
& nrb,b%ia(ibp:ibp+nrb-1),b%val(ibp:ibp+nrb-1))
end do
end subroutine csc_mat_col_prod
subroutine csr_mat_row_prod(a,b,v,info)
implicit none
type(psb_lc_csr_sparse_mat), intent(in) :: a, b
complex(psb_spk_), intent(out) :: v(:)
integer(psb_ipk_), intent(out) :: info
integer(psb_lpk_) :: i,j,k, nr, nc,iap,nca,ibp,ncb
info = psb_success_
nr = a%get_nrows()
if (nr /= b%get_nrows()) then
write(0,*) 'Matrices A and B should have same rows'
info = -1
return
end if
do j=1, nr
iap = a%irp(j)
nca = a%irp(j+1)-iap
ibp = b%irp(j)
ncb = b%irp(j+1)-ibp
v(j) = sparse_srtd_dot(nca,a%ja(iap:iap+nca-1),a%val(iap:iap+nca-1),&
& ncb,b%ja(ibp:ibp+ncb-1),b%val(ibp:ibp+ncb-1))
end do
end subroutine csr_mat_row_prod
function sparse_srtd_dot(nv1,iv1,v1,nv2,iv2,v2) result(dot)
implicit none
integer(psb_lpk_), intent(in) :: nv1,nv2
integer(psb_lpk_), intent(in) :: iv1(:), iv2(:)
complex(psb_spk_), intent(in) :: v1(:),v2(:)
complex(psb_spk_) :: dot
integer(psb_lpk_) :: i,j,k, ip1, ip2
dot = czero
ip1 = 1
ip2 = 1
do
if (ip1 > nv1) exit
if (ip2 > nv2) exit
if (iv1(ip1) == iv2(ip2)) then
dot = dot + conjg(v1(ip1))*v2(ip2)
ip1 = ip1 + 1
ip2 = ip2 + 1
else if (iv1(ip1) < iv2(ip2)) then
ip1 = ip1 + 1
else
ip2 = ip2 + 1
end if
end do
end function sparse_srtd_dot
subroutine local_dump(me,mat,name,header)
type(psb_lcspmat_type), intent(in) :: mat
integer(psb_ipk_), intent(in) :: me
character(len=*), intent(in) :: name
character(len=*), intent(in) :: header
character(len=80) :: filename
write(filename,'(a,a,i0,a,i0,a)') trim(name),'.p',me
open(20+me,file=filename)
call mat%print(20+me,head=trim(header))
close(20+me)
end subroutine local_dump
end subroutine amg_caggrmat_minnrg_bld